Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
СГУЩЕНИЕ ТЕМНОТЫ
Некоторые физики полагают, что загадочное темное вещество Вселенной состоит из огромных частиц размером в световой год или даже больше. Оказавшись в их окружении, обычное вещество подобно мыши, снующей под ногами динозавров. Далее...

Тёмная материя

адаптивная оптика

АДАПТИВНАЯ ОПТИКА - раздел оптики, занимающийся разработкой оптич. систем с динамич. управлением формой волнового фронта для компенсации случайных возмущений и повышения т. о. предела разрешения наблюдат. приборов, степени концентрации излучения на приёмнике или мишени и т. п. А. о. начала интенсивно развиваться в 1950-е гг. в связи с задачей компенсации искажений фронта, вызванных атм. турбулентностью и накладывающих осн. ограничение на разрешающую способность наземных телескопов. Позднее к этому добавились проблемы создания орбитальных телескопов и мощных лазерных излучателей, подверженных др. видам помех. Адаптивные оптич. системы классифицируются по порядку волновых аберраций (см. Аберрации оптических систем ),к-рые они способны компенсировать (т. е. по степени полинома, в виде к-рого представляется распределение фазовой поправки по сечению пучка).

Простейшие системы - 1-го и 2-го порядков - изменяют общий наклон волнового фронта и его кривизну простым перемещением отд. оптич. элементов фиксированной формы. Для систем более высокого порядка в качестве корректирующих элементов вначале чаще всего использовались зеркала, разбитые на соответствующее число самостоятельно перемещаемых сегментов. Постепенно они вытесняются гибкими ("мембранными") зеркалами, формой поверхности к-рых управляют либо созданием изгибающих моментов внутри самого зеркала, либо действием сил со стороны несущей конструкции. Часто используются небольшие деформируемые зеркала с пьезоэлектрич. приводами, устанавливаемые на участках оптич. системы с умеренными размерами сечения светового пучка (неподалёку от фокальной плоскости объектива телескопа и т, п.).

Информацию о необходимом воздействии на волновой фронт получают методом пробных возмущений либо непосредств. измерением формы фронта. Оба эти способа применяются при создании как приёмных, так и излучающих систем.

Метод пробных возмущений (или апертурного зондирования). Заключается в измерении реакции на небольшие, преднамеренно вносимые фазовые искажения. Контролируемым параметром при этом обычно является интенсивность излучения в сфокусированном пятне либо интенсивность света, рассеянного мишенью. Эффекты, за к-рые ответственны разные виды фазовых искажений, разделяют либо по частоте (т. н. многовибраторный метод), либо по времени (т. н. многоступенчатый или последоват. метод). В первом случае возбуждаются малые гармонич. колебания разл. участков зеркала (либо колебат. моды зеркала в целом) с разл. частотами; спектральный анализ результирующего сигнала позволяет установить величину и направление необходимых для оптимизации системы изменений формы фронта. Во втором случае возбуждение колебаний отд. участков или мод зеркала осуществляется последовательно во времени.

Для пробных возбуждений и итоговой корректировки фазового распределения обычно используются разные зеркала - одно обеспечивает малые изменения фазы с высокими временными частотами, второе имеет значительно больший диапазон изменения формы и может быть более инерционным. Связанное с этим усложнение осн. оптич. тракта в определ. степени компенсируется применением лишь одного некогеревт-ного приёмника излучения.

Прямое измерение формы волнового фронта. Для него разработаны самые разнообразные и порой весьма оригинальные способы (гл. обр. интерферометриче-ские), обычно применяемые в сочетании с методом компенсации волнового фронта (для приёмных систем) и методом фазового сопряжения (для излучателей). Метод компенсации заключается в восстановлении у волнового фронта излучения, пришедшего от находящегося в поле зрения точечного объекта, идеальной сферич. формы (утраченной им вследствие влияния турбулентности атмосферы и аберраций объектива телескопа).

111992-80.jpg

Схема метода фазового сопряжения. Толстая линия - волновой фронт исходной волны; тонкая - волновой фронт опорного излучения; стрелками показано направление распространения волновых фронтов.

В методе фазового сопряжения волновому фронту излучения, испускаемого мощным источником, придаётся форма, сопряжённая по фазе с фронтом опорного излучения, рассеянного мишенью и пришедшегок источнику (рис.; для предварит. освещения мишени с целью получения опорного излучения может использоваться как основной, так и вспомогат. источник). Т. о., на излучаемую волну заранее накладываются такие искажения, что последующие искажения на пути её распространения оказываются скомпенсированными; этим достигается макс. концентрация излучения за мишени.

Нередко к А. о. относят также область лазерной техники, связанную с применением фазово-сопряжённых волн для автокомпенсации искажений волнового фронта в мощных лазерных усилителях. В нек-рых случаях удаётся непосредств. преобразование опорной волны в сопряжённую с помощью методов нелинейной оптики и голографии (см. Обращение волнового фронта).

Лит.. Харди Дж. У., Активная оптика новая техника управления световым пучком, [пер. с англ.], "ТИИЭР", 1978, г. 66, № 6, с. 31; Adaptive optics, "J. Opt. Soc. Amer.", 1977, v. 67,№ 3. Ю. А. Ананьев.

  Предметный указатель