Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Философия физики: резонанс и мироздание
Новый оригинальный взгляд на мироздание. Все формы материи удерживаются в состоянии устойчивости благодаря резонансу. Присутствие же его повсеместно – это основа всех процессов в природе и технике. В статье представлены некоторые аспекты действия резонанса в процессе развития живых и неживых структур. Далее...

Резонанс - основа мироздания

аморфные магнетики

АМОРФНЫЕ МАГНЕТИКИ - класс магнитных материалов, сочетающих определ. магнитную атомную структуру, напр. ферромагнитную, с аморфной атомной структурой в ограниченном интервале темп-р. Возможность существования А. м. была впервые показана теоретически в 1960 [1]. Полученные А. м. но магн. свойствам не уступают или близки к лучшим кристаллич. магн. материалам, но технология их изготовления существенно проще.

Особенности магн. состояния А. м. определяются особенностями аморфного состояния вещества - отсутствием дальнего и наличием ближнего атомного порядка, термодинамич. неравновесностью, флуктуациями атомных магн. моментов, обменных и анизотропных взаимодействий. Указанные флуктуации и топологич. особенности строения "сетки" атомов аморфного вещества формируют магн. структуры А. м. Теоретич. и эксперим. исследования показали, что существуют след. типы А. м.: ферромагнетики (ФМ), спиновые стёкла (СС), ферримагнетики (ФИМ), неупорядоченные ферромагнетики (НФМ), неупорядоченные ферримагнетики (НФИМ). Последние два типа А. м. наз. также асперомагнитными и сперимагнитными соответственно. Теория допускает также возможность неупорядоченного антиферромагн. состояния. На рис. 1 схематически представлены указанные структуры А. м. и примеры магнетиков соответствующих типов. Во всех магн. структурах А. м. (кроме СС) существует дальний магн. порядок.

Структуры ФМ и НФМ (рис. 1, а, г) имеют ненулевой макроскопич. спонтанный магн. момент (МK0). Их различие связано со стохастичностью и существенной неколлинеарностью структуры НФМ. Состояние СС (рис. 1, б)представляет собой систему хаотически "замороженных" в пространстве магн. моментов с общим моментом М=0. Наконец, состояния ФИМ и НФИМ (рис. 1, в, д)характерны для двухкомпонентных систем типа сплавов переходных 3d- и 4f-металлов.

НФИМ отличается неупорядоченностью и неколлинеарностью магн. моментов.

Физ. свойства А. м. специфичны, напр. перевод магнетика в аморфное состояние вызывает, как правило, снижение темп-ры магнитного фазового перехода в парамагн. состояние. Флуктуации обменных взаимодействий в случае аморфного ФМ увеличивают скорость снижения спонтанной намагниченности при увеличении темп-ры.

111994-171.jpg

Рис. 1. Типы магнитных структур аморфных магнетиков а-ферромагнитная; б - спиновое стекло; в-ферримагнитная; г - неоднородная ферромагнитная, д - неоднородная ферримагнитная. Точки и кружки обозначают места локализации атомных магнитных моментов в структурах ФМ и СС точки - атомы железа, в структуре ФИМ - атомы кобальта, кружки - атомы гадолиния, в структурах НФМ точки - атомы гадолиния, в структуре НФИМ - атомы железа, кружки - атомы диспрозия.

Энергетич. спектр элементарных магн. возбуждений аморфного ФМ имеет "ротонный" характер (см. Квазичастица), т. е. существует минимум энергии при значении волнового числа, определяемом характерным размером неоднородности структуры. Низкотемпературная "магнитная" часть теплоёмкости некоторых редкоземельных А. м. линейно зависит от темп-ры. При идеальной изотропии аморфного вещества макроскопич. магн. анизотропия в нём отсутствует. Однако локальная магн. анизотропия, возникающая, напр., от анизотропии локального внутрикристаллического поля, оказывает важное влияние на магн. свойства А. м. Так, коэрцитивная сила аморфного ФМ увеличивается очень резко, когда энергия одноионной локальной анизотропии становится сравнимой с энергией обменного взаимодействия. Это явление используют для создания магнитно-жёстких А. м. Реальные А. м. не являются макроскопически изотропными из-за различных, гл. обр. технол., причин и обычно обладают макроскопич. магн. анизотропией.

Сравнение магнитных свойств некоторых кристаллических и аморфных сплавов (ЗООК)

Сплавы

Состав

111994-172.jpg,Тл

Тк

°c

НС,

А/м

111994-173.jpg 106

Кристаллические

Ni(80%) Fe (16%)

0,78

460

2

~0

Мо (4%)





Ni (80%) Fe(20%)

0,82

400

0,4

~0

Ni (50%)Fe(50%)

1,60

480

8

40

Fe(96,8%)Si (3,3%)

2,03

730

40

4

Аморфные

Fе,Со72Р16B6А13

0,63

260

1,2

~0

Fe80P14B6

1,36

344

8

26

Fe80P16C3B1

1,49

292

4

30

Fe30B20

1,60

374

3,2

30

Примечание: 111994-174.jpg-магнитная индукция; Тк- темп-ра Кюри, НС - коэрцитивная сила, 111994-175.jpg- магнитострикция насыщения.

В аморфных ФМ и ФИМ наблюдаются разл. типы доменных структур, включая цилиндрич. магн. домены. Магнитострикции аморфных ФМ и их кристаллич. аналогов сравнимы [2].

Методы получения А. м. основываются на том или ином способе фиксации неупорядоченного атомного состояния вещества. Наибольшее распространение получили методы закалки расплавов со скоростями 104-106 К/с. Напр., для получения аморфных металлич. ферромагн. лент и нитей используют метод "спиннингования" расплава на вращающийся металлич. барабан (рис. 2, а) либо метод "экстракции" - выбрасывания расплава вращающимся диском (рис. 2, 6).


111994-176.jpg

Рис. 2. Методы получения металлических аморфных магнетиков. а - Метод "спиннингования": 1 - расплав; 2 - вращающийся металлический диск; 3 - аморфная лента, б - Метод экстракции расплава: 1 - ванна с расплавом, 2 - вращающийся металлический диск; 3 - вспомогательный диск для очистки поверхности диска 2; 4 - аморфный сплав.

Для получения аморфных порошков вещество распыляют элек-трич. полем, взрывной волной и т. п. Массивные А. м. формируют из порошков методом прессования или взрыва. Используют также метод ионно-плазменного напыления. В тонкоплёночном виде А. м. получают методами конденсации паров на охлаждённую подложку, электро- и хим. осаждения, ионно-плазменного напыления, ионной имплантации и др. [3, 4].

Перспективность техн. использования А. м. из металлических стекол связана с относительной простотой их получения, высокой магнитной проницаемостью (~106), малыми магн. потерями (50,5 Вт/кг), высокой антикоррозийной стойкостью, относительно большим электрич. сопротивлением, возможностью получения магнитно-жёстких материалов с большой магн. энергией. Недостатки А. м. обусловлены принципиальной нестабильностью аморфного состояния.

Со временем происходят перестройка атомной структуры А. м. и соответствующие изменения магн. свойств. Кроме того, введение аморфизующих добавок (неметаллов) снижает намагниченность А. м., а снижение темп-ры магн. фазового перехода делает их менее термостабильными. Магнитно-мягкие А, м. получают на основе сплавов Sd-металл - неметалл [см. табл., типичный пример - метгласс (металлич. стекло) Fe80B20]. В качестве магнитно-жёстких материалов используют сплавы 3d- и 4/-металлов, напр. TbFe2. А. м. применяют для создания трансформаторов, магн. экранов, пост. магнитов, головок магнитофонов, систем магн. памяти и др. устройств электро- и радиотехники.

Лит.: 1) Губанов А. И., Квазиклассическая теория аморфных ферромагнетиков, "ФТТ", 1960, т. 2, с. 502; 2) Петраковский Г. А., Аморфные магнетики, "УФН", 1981, т. 134, с. 305; 3) Хандрих К., Кобе С., Аморфные ферро- и ферримагнетики, пер. с нем., М., 1982; 4) Быстрозакапённые металлы, пер. с англ., М., 1983.

Г. А. Петраковский.

  Предметный указатель