Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
МОНИТОРИНГ ВУЛКАНОВ
Новая лазерная система позволит заблаговременно предсказать активизацию вулканов.
Современные сейсмометры регистрируют подземные толчки и другие движения земной коры,но их показания недостаточно точны. Более перспективный метод предсказания извержений основан на контроле соотношения изотопов углерода в углекислом газе. Далее...

Извержение вулкана

визуализация изображений

ВИЗУАЛИЗАЦИЯ ИЗОБРАЖЕНИЙ - методы преобразования пространственного распределения нек-рого параметра физ. поля, гл. обр. эл--магн. излучения, невидимого для человеческого глаза (ИК-, УФ-, УЗ-, рентг. излучений и др.), испускаемого или отражённого (рассеянного) объектом, в видимое (чёрно-белое или цветное) изображение. При этом яркость или цвет элемента видимого изображения должны соответствовать определ. величине параметра визуализируемого поля, напр. энергетич. освещённости или распределению по спектру ИК- или УФ-излучения, давлению УЗ-поля, плотности потока нейтронов и пр. В ряде случаев возможна визуализация не только распределения интенсивности, но и распределения фазы или состояния поляризации электромагнитного поля или иного излучения.

Важнейшими параметрами визуализирующих систем и способов В. и. являются пороговая чувствительность g - величина входного сигнала, при к-рой достигается заданное отношение сигнал/шум в выходном изображении (обычно измеряется в Вт/см2 или Дж/см2), предельное пространственное разрешение R (в мм-1), постоянная времени 1119914-332.jpg (с) или частота получения изображений f (кадр/с). Устройства для В. и. характеризуются также областью спектральной чувствительности, динамич. диапазоном, частотно-контрастной характеристикой, реверсивностью и т. д. Для сравнения систем В. и., основанных на разл. физ. принципах, служит квантовая эффективность детектирования, характеризующая степень приближения реальной системы к характеристикам идеального приёмника, шумы к-рого определяются только квантовыми флуктуациями потока регистрируемого излучения (см. Квантовый выход прибора).

Наиб. развиты методы В. и., создаваемых эл--магн. излучением за пределами видимой области спектра. В ИК-области до 1,3 мкм используются галогенидосеребряные фотослои, сенсибилизированные к ИК-излучению (1119914-333.jpg10-4-10-6 Дж/см2, 1119914-334.jpg 60-80 мм-1), до 1,7 мкм - электронно-оптические преобразователи (1119914-335.jpg10-11 Дж/см2, 1119914-336.jpg30-40 мм-1). Для визуализации ИК-изображений в окнах прозрачности атмосферы 3-5 и 8-14 мкм применяют тепловизоры - приборы, в к-рых поле изображения сканируется одно-или многоэлементным фотоэлектрич. приёмником, преимущественно на основе соединения InSb (3-5 мкм) или CdHgTe (8-14 мкм), охлаждаемого до 77 К (см. Тепловидение). Возможно использование тепловых приёмников изображения - эвапорографов (см. Эвапорография)или телевизионных трубок с теплочувствит. мишенью из пироэлектрич. материалов (см. Пироэлектрики - )пировидиконов. Чувствительность тепловизоров обычно характеризуется минимально обнаружимой разностью темп-ры в тепловом поле объекта (приводимой к излучению чёрного тела) и составляет для лучших моделей 0,1-0,2 К, что соответствует разности в энергетич. освещённости объекта и фона 10-6 Вт/см2; у эвапорографа последняя величина равна 10-5 Вт/см2, разрешение 1119914-337.jpg10-15 мм-1. В тепловизорах используются объективы из монокристаллов Si, Ge, халько-генидных стёкол и поликристаллич. оптич. материалов. Меньшей чувствительностью обладают др. способы В. и., основанные на тепловом тушении люминесценции (1119914-338.jpg10-2-10-3 Вт/см2, 1119914-339.jpg15-30 мм-1), но зато такие люминофорные экраны чувствительны не только в оптическом, но и в КВ-радиодиапазоне (радиовизоры). В ИК-диапазоне в системах В. и. могут использоваться слои холестерических (1119914-340.jpg10-2-10-4 Вт/см2, 1119914-341.jpg 5 мм-1) или нематических (1119914-342.jpg0,2-2,0 Вт/см2) жидких кристаллов, а также фотохромные материалы. Для визуализации импульсных полей лазерного излучения и для оптич. микрозаписи информации (видеодиски, оптич. запоминающие устройства) применяются испаряющиеся тонкие металлич. плёнки (1119914-343.jpg0,5-1,0 Дж/см2, 1119914-344.jpg2000 мм-1), термомагнитные плёнки (1119914-345.jpg10-2 Дж/см2, 1119914-346.jpg300 мм-1), слои "ФТИРОС", регистрирующие излучение на основе фазового перехода в тонких плёнках V2O5 (1119914-347.jpg10-2 Дж/см2, 1119914-348.jpg500- 800 мм-1). В. и. в субмиллиметровой области спектра достигается с помощью либо тепловых (радиовизор, жидкие кристаллы), либо радиотехн. методов. Развиваются методы В. и. в ИК-области, основанные на пара-метрич. преобразовании частоты (см. Параметрический генератор света)детектируемого излучения "вверх" при накачке нелинейного кристалла некогерентным ИК-излучением или мощным излучением лазера (коэф. преобразования мощности излучения накачки ~10-5- 10-6, 1119914-349.jpg50 мм-1).

Для В. и. в УФ- и рентг. областях спектра, наряду с фотослоями, содержащими повышенную концентрацию AgBr и уменьшенное кол-во желатина, используются люминесцентные экраны, электронно-оптич. преобразователи с фотокатодом из CsJ и микроканальные усилители яркости (1119914-350.jpg10-10-10-11 Дж/см2, 1119914-351.jpg40 мм-1). Для построения оптич. изображения в этой области применяются либо зеркальные системы со скользящим отражением от ультрагладких металлич. зеркал, либо камера-обскура ,либо многоканальная система зеркальных концентраторов лучей на элементарные площадки множества детекторов, подобно фасеточному глазу насекомых. Чрезвычайно плодотворным в рентгеновской (а также в УЗ-) области оказался метод томографии - обработки с помощью ЭВМ ряда теневых проекций исследуемого объекта с синтезом объёмного полутонового изображения.

Для визуализации траекторий заряженных частиц применяются трековые камеры (пузырьковая, Вильсона, диффузионная, искровая), телескоп счётчиков, метод ядерных фотографических эмульсий, трековые детекторы частиц - слюда, нитратцеллюлозные плёнки.

Визуализация эл--статич. полей на поверхности высокоомных полупроводников или диэлектриков с помощью заряж. частичек красящего порошка используется для проявления скрытого изображения в электрофотографии. Магн. поля визуализируют как нанесением железных опилок, так и в поляризов. свете с использованием магнитооптич. Керра эффекта .Поля механич. напряжений в моделях конструкций, изготовленных из оптически активных пластмасс, визуализируют в поляризов. свете (метод фотоупругости). Для этих же целей в произвольных объектах используют метод голографической интерферометрии. Визуализация аэро-или гидродинамич. потоков осуществляется с помощью интерференц. и теневых методов.

Визуализация УЗ-изображений и голограмм основана на методах деформации поверхностного рельефа в жидкости, дифракции света на ультразвуке (1119914-352.jpg10-9 Вт/см2), тепловом воздействии УЗ на жидкие кристаллы или пропитанные проявителем предварительно засвеченные фотослои (1119914-353.jpg10-4-1 Вт/см2), а также на использовании матриц пьезоэлектрич. приёмников (1119914-354.jpg10-8 Вт/см2) (подробнее см. Визуализация звуковых полей ).Для визуализации трёхмерных полей концентрации хим. веществ в атмосфере применяют методы дистанционной лазерной спектроскопии; в живом организме, наряду с методом радиоакт. изотопов, используют томографию с детектированием сигнала ядерного магн. резонанса.

Лит.: Роуз А., Зрение человека и электронное зрение, пер. с англ., M., 1977; Ллойд Дж., Системы тепловидения, пер. с англ., M., 1978; Грегуш П., Звуковидение, пер. с англ., M., 1982; Луизов А. В., Глаз и свет, Л., 1983; Несеребряные фотографические процессы, под ред. А. Л. Картужанского, Л., 1984. В. H. Синцов.

  Предметный указатель