Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Бозон Хиггса – найден ли?
На «Теватроне» получены новые данные.
Ученый мир обсуждает неофициальное сообщение о возможном открытии бозона Хиггса. Предполагалось, что о его существовании можно будет говорить после нескольких лет исследований на Большом адронном коллайдере. Но 8 июля Томмазо Дориго итальянский физик-ядерщик всколыхнул научную общественность. Далее...

В поисках бозона Хиггса

волновод металлический

ВОЛНОВОД МЕТАЛЛИЧЕСКИЙ - цилиндрич. или изогнутая труба, внутри к-рой могут распространяться эл--магн. волны. Чаще всего используют В. м. прямоугольных и круговых сечений (прямоугольные и круглые волноводы). Возможность существования волн внутри металлич. трубы была теоретически установлена Рэлеем (Дж. У. Стреттом) (Rayleigh, J. W. Strutt) ещё в кон. 19 в. Широкое развитие волноводной техники связано с освоением сантиметрового диапазона волн в кон. 30-х гг. 20 в. В настоящее время В. м. применяют также и для волн дециметрового и миллиметрового диапазонов. Механизм распространения волн в В. м. обусловлен их многократным отражением от стенок. Пусть плоская волна падает в вакууме на идеальную отражающую металлическую плоскость x=0 (рис. 1), причём электрическое поле E волны параллельно этой плоскости. Суперпозиция падающей и отражённой волн образует плоскую неоднородную волну, бегущую вдоль оси Oz, и стоячую волну вдоль оси Ox : 1119916-157.jpg . Здесь kx и kz - проекции волнового вектора k на оси Ox и Oz, 1119916-158.jpg - частота волны. Узлы стоячей волны (плоскости, на к-рых Еу=0)расположены на расстояниях 1119916-159.jpg (n=0,1,2,3. . .). В них можно помещать идеально проводящие тонкие металлич. листы, не искажая поле. Подобными листами можно ограничить систему с боков, перпендикулярно линиям Ey. T. о. удаётся построить распределение эл--магн. поля для волны, распространяющейся внутри трубы прямоугольного сечения (прямоугольный В. м.). Построение поля путём многократного отражения плоских волн от стенок, поясняющее механизм его распространения в В. м., наз. концепцией Бриллюэна.

Распространение волн в В. м. возможно только при наклонном падении волны на стенки В. м. (1119916-160.jpg=1119916-161.jpg . При нормальном падении (1119916-162.jpg=0),kz=0, поле перестаёт зависеть от z и волна оказывается как бы запертой между двумя плоскостями. В результате в В. м. образуются нормальные колебания, частоты к-рых 1119916-163.jpg определяются числом полуволн п, укладывающихся между металлич. плоскостями: 1119916-164.jpg (с - скорость света в вакууме, d - расстояние между плоскостями). Эти частоты наз. критическими частотами В. м. Ниж. критич. частота 1119916-165.jpg соответствует n=1. Внутри В. м. могут распространяться волны только с частотами 1119916-166.jpg, или 1119916-167.jpg1119916-168.jpg. Длина волны в В. м. (периодичность поля вдоль оси Oz): 1119916-169.jpg. При 1119916-170.jpg при 1119916-171.jpg . Это означает, что при 1119916-172.jpg поле в В. м. имеет не волновой, а колебат. характер. При 1119916-173.jpg волна в В. м. затухает.

Поэтому для передачи сигналов длинноволнового диапазона В. м. оказываются слишком громоздкими: их применяют обычно для 1119916-174.jpg<10-20 см. В технике СВЧ используют каналы разл. сечений (рис. 2). Обычно к В. м. относят только каналы с односвязными сечениями; каналы с двух- или многосвязными сечениями относят к линиям передачи, хотя они являются разновидностями В. м.

Волноводные моды (волноводные волны). В В. м. могут возбуждаться разл. типы волн, отличающиеся структурой эл--магн. поля и частотой (моды ).Волноводные моды находят из решения Максвелла уравнений при соответствующих граничных условиях (для идеальных проводников равенство нулю тангенциальной составляющей электрич. поля). Поперечная структура полей в В. м. определяется скалярной ф-цией 1119916-175.jpg , удовлетворяющей ур-нию идеальной мембраны с закреплёнными (1119916-176.jpg=0) или свободными (1119916-177.jpg=0, п - нормаль к границе S)краями в зависимости от типа поляризации эл--магн. поля. Задача о собств. колебаниях мембраны имеет бесконечное, но счётное множество решений, соответствующих дискретному набору действительных собств. частот. Каждое из этих собств. колебаний соответствует либо нормальной волне, распространяющейся вдоль В. м., либо экспоненциально убывающей или нарастающей колебат. модам.

1119916-178.jpg

Рис. 2. Формы поперечного сечения нек-рых металлических волноводов.

1119916-179.jpg

Рис. 3. Структура поля волны TE10 в прямоугольном волноводе; сплошные линии - силовые линии электрического поля, пунктирные - магнитного поля.

Для прямоугольного В. м. с длиной сторон а и b спектр собств. частот определяется выражением:1119916-180.jpg1119916-181.jpg , где п и т - числа стоячих полуволн, укладывающихся вдоль а и b. Чем больше т и п, тем сложнее поле в В. м. Наименьшее 1119916-182.jpg соответствует n=1, m=0, если b<а, или n=0, m=1, если а<b (мембрана со свободными краями; именно для этой моды была проиллюстрирована выше концепция Бриллюэна). При этом поле E поляризовано в плоскостях z=const.

1119916-183.jpg

Рис. 4. Структура поля волны TE11 в прямоугольном волноводе.

1119916-184.jpg

Рис. 5. Структура поля волны TM11 в прямоугольном волноводе.

Эти волны наз. ТЕ-волнами (от англ. transverse - поперечный) или Н-волнами. Простейшие моды прямоугольного В. м.- волны TE10 (рис. 3) и TE11 (рис. 4). Задача о мембране с закреплёнными краями порождает волны типа ТМпт (или Епт). Здесь и nK0, и тK0, т. к. силовые линии магн. поля не могут упираться в идеально проводящие стенки (они всегда замыкаются сами на себя). Простейшая волна этого типа - TM11 (рис. 5). С увеличением размера В. м. число мод растёт. При этом поперечное сечение В. м. разбивается на ячейки, каждая из к-рых как бы представляет собой элементарный В. м. с одной из простейших мод - типа TE10, TE11 или TM11.

1119916-185.jpg

Рис. 6. Структура поля волны ТМ01 в круглом волноводе.

1119916-186.jpg

Рис. 7. Структура поля волны TE01 в круглом волноводе.

Аналогично можно построить распределение полей в В. м. любого поперечного сечения. На рис. 6-9 показаны структуры полей для мод внутри В. м. круглого сечения. Простейшей является мода TE11 (рис. 9), к-рая топологически соответствует волне ТЕ10 в прямоугольном В. м.

1119916-187.jpg

Рис. 8. Структура поля волны ТМ11 в круглом волноводе.

1119916-188.jpg

Рис. 9. Структура поля волны 11 в круглом волноводе.

Если 1119916-189.jpg меньше мин. критич. частоты данного волновода, то в нём не существует распространяющейся волны. Однако если сечение неодносвязно, как, напр., в двухпроводной линии или в коаксиальном кабеле, то одна волна имеет нулевую критич. частоту, т. е., по крайней мере, распространяется при сколь угодно низкой частоте, в ней Ez=0, Hz=0, фазовая скорость в случае вакуумного заполнения не зависит от частоты и равна с, групповая скорость тоже равна с. Это кабельная, или ТЕМ-мода; она используется практически во всех HЧ энергетич. линиях передач и линиях связи.

Иногда, особенно на миллиметровых волнах или при передаче большой мощности, применяют т. н. сверхразмерные В. м., сечение к-рых настолько велико, что в них может распространяться не только осн. волна, но и неск. других волн. При этом возможен нежелат. процесс преобразования - перехода энергии от одного типа волны к другому. Такие преобразования происходят на любой нерегулярности, напр. на изгибе В. м., на неточном (со смещением или изломом) стыке двух волноводных секций и т. д. Для предотвращения преобразований и для ослабления вызываемого ими нарушения структуры поля применяют, в частности, разл. корректирующие диэлектрич. пластинки, вводимые внутрь В. м. Используя ферритовые материалы, можно создать В. м. с невзаимными свойствами (обычно одномодовые), в к-рых волны одного и того же типа, распространяющиеся в противоположных направлениях, имеют разл. свойства. Такие системы используют в качестве СВЧ-вентилей.

Нераспространяющиеся волны, для к-рых 1119916-190.jpg , образуются вблизи любой нерегулярности, элементов связи, волноводных элементов, но поле их быстро убывает при удалении от этих элементов. В нек-рых устройствах эти волны используют для создания градуируемых аттенюаторов поля в В. м.

Все волноводные моды (кроме кабельных) быстрые: их фазовая скорость 1119916-191.jpg (в общем случае больше скорости однородной плоской волны в среде, заполняющей В. м.) и всегда нелинейно зависит от частоты 1119916-192.jpg, причём 1119916-193.jpg , т. е. В. м. подобен среде с норм. дисперсией (см. Дисперсия волн ).Групповая скорость волны любого типа в В. м. обратно пропорциональна1119916-194.jpg: 1119916-195.jpg; она меньше скорости света с в вакууме. T. к. 1119916-196.jpgи1119916-197.jpg различны для разных мод, то для неискажённой передачи сигналов следует либо работать в диапазоне частот, допускающих распространение только одной, простейшей моды, либо, наоборот, пользоваться сверхразмерными многомодовыми В. м., когда при 1119916-198.jpg из множества распространяющихся мод может быть сформирован почти оторванный от стенок волновой пучок (см. Квазиоптика, Оптический резонатор).

Возбуждение В. м. осуществляется с помощью антенн: металлич. штыря (электрич. диполь), петли (магн. диполь), отверстия или щели (щелевая антенна). Электрич. диполь должен быть ориентирован по линиям поля 1119916-199.jpg нужной моды, петли должны пронизываться линиями 1119916-200.jpg , а щели прорезываться в стенках поперёк линий тока, т. е. вдоль линий 1119916-201.jpg. Эффективность возбуждения зависит также от характеристик антенны, обычно оптимальным является равенство её внутр. сопротивления сопротивлению излучения в данную моду.

Затухание волн в В. м. обусловлено потерями энергии в металлич. стенках или диэлектрич. среде. Частотная зависимость коэф. затухания 1119916-202.jpg из-за потерь в стенках показана на рис. 10; при очень больших со потери растут с частотой для всех мод, кроме волны 1119916-205.jpg в круглом В. м.

1119916-203.jpg

Рис. 10. Частотная зависимость коэффициента затухания 1119916-204.jpg для моды TE11 круглого волновода из-за потерь в проводящих стенках.


В. м. служат фидерными устройствами в радиолокац. и др. системах, т. е. используются для передачи сигнала от передатчика в передающую антенну и от приёмной антенны к приёмнику. Фидерная система на СВЧ имеет вид волноводного тракта, состоящего из разл. волноводных узлов.

Осн. преимуществом В. м. по сравнению с обычными линиями передачи (двухпроводной линией и коаксиальным кабелем) являются относительно малые потери энергии. Причина состоит в том, что при одинаковых внеш. размерах В. м. и двухпроводной линии (или коаксиального кабеля) поверхность волновода, по к-рой протекают электрич. токи (при распространении волны), обычно больше, чем поверхность проводов двухпроводной линии (или жилы коаксиального кабеля). T. к. глубина проникновения токов во всех случаях определяется скин-эффектом, то плотности токов, а следовательно, и джоулевы потери в В. м. меньше, чем в линии.

Лит.: Лебедев И. В., Техника и приборы СВЧ, 2 изд., т. 1, M., 1970; Фельдштейн А. Л., Явич Л. Р., Смирнов В. П., Справочник по элементам волноводной техники, 2 изд., M., 1967; Xарвей А. Ф., Техника сверхвысоких частот, т. 1-2, пер. с англ., M., 1965; Каценеленбаум Б. 3., Высокочастотная электродинамика, M., 1966; Фелсен Л., Маркувиц H., Излучение и рассеяние волн, т. 1-2, пер. с англ., M., 1978; Виноградова M. Б., Руденко О. В., Сухоруков А. П., Теория волн, M., 1979. M. А. Миллер.

  Предметный указатель