Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Взгляд в 2020 год. Лазеры
Будущие открытия в области физики лазеров.
Корреспонденты журнала Nature опросили ученых из разных областей науки.
Те, кто задумал и изобрел лазер 50 лет назад не могли предсказать той роли, которую они стали играть в течение последней половины века: от средств связи до контроля окружающей среды, от производства до медицины, от развлечений до научных исследований. Далее...

Лазер

гистерезис упругий

ГИСТЕРЕЗИС УПРУГИЙ - отставание деформации упругого тела от напряжения по фазе, в связи с чем в каждый момент времени величина деформации тела является результатом его предыстории. При циклич. приложении нагрузки диаграмма, изображающая зависимость деформации 1119925-361.jpg от напряжений1119925-362.jpg, даёт петлю Г. у. (рис.). Площадь петли 1119925-363.jpg пропорциональна доле энергии упругости, перешедшей в тепло. Для оценки величины Г. у. пользуются отношением 1119925-364.jpg, где U - энергия упругой деформации (штриховка на рис.). 1119925-365.jpg является одной из мер внутреннего трения в твёрдых телах, что указывает на непосредств. связь Г. у. с внутр. трением. У металлич. материалов в пределах упругости 1119925-366.jpg<1, у резиноподобных веществ, пластмасс и у металлов после больших пластич. деформаций может быть1119925-368.jpg1. У анизотропных кристаллов и у дерева петли Г. у. отличаются по осям анизотропии, а у резин (рис., в) и пластмасс при нелинейности упругих деформаций имеют особую, часто нестабильную форму.

1119925-367.jpg

Характерные петли упругого гистерезиса: а - при простом (моногармоническом) циклическом нагружении; б - при затухании колебаний; в - при нелинейных упругих деформациях резин; г - при обратимом мартенситном превращении кристаллических твердых растворов.


Различают два вида Г. у.- динамический и статический. Динамический Г. у. наблюдают при циклически изменяющихся напряжениях, макс. амплитуда к-рых существенно ниже предела упругости. Причиной этого вида Г. у. является неупругость либо вязкоупругость. При неупругости, помимо чисто упругой деформации (отвечающей закону Гука), имеется составляющая, к-рая полностью исчезает при снятии напряжений, но с нек-рым запозданием, а при вязко-упругости эта составляющая полностью со временем не исчезает. Как при неупругом, так и вязкоупру-гом поведении величина 1119925-369.jpg не зависит от амплитуды деформации и меняется с частотой изменения 1119925-370.jpg. Динамич. Г. у. возникает в результате термоупругости, магнитоупругих явлений, а также изменения положения точечных дефектов и растворённых атомов в кристаллич. решётке тела под влиянием приложенных напряжений.

Статический Г. у. имеет место как при статич., так и при циклич. нагрузках под действием напряжений, близких к пределу упругости. В этом случае петля Г. у. не зависит от скорости нагружения или частоты колебаний, но может изменяться при многократных нагружениях, что указывает на связь между явлениями Г. у. и усталостью материалов. Причинами, вызывающими статич. Г. у., являются трение в кристаллич. решётке при движении дислокаций (силы Пайерлса); обратимое выгибание дислокаций (не вызывающее изменения их плотности и распределения), закреплённых атомами примесей, точечными дефектами и др. дислокациями; аннигиляция дислокаций, а также появление в отд. зёрнах поликристаллич. материала локальной пластич. деформации, создающей в окружающей среде остаточные напряжения, к-рые при изменении направления нагружения тела вызывают локальную пластич. деформацию обратного знака. При циклич. изменении напряжения упругая энергия необратимо превращается в тепло. Поскольку внутр. процессы, приводящие к статич. Г. у., возможны при напряжениях, вызывающих пластич. деформацию, то этот вид Г. у. представляет интерес для изучения усталости материалов, но не для изучения тонких релаксац. явлений в них.

В нек-рых кристаллич. твёрдых растворах (преим. металлич.) при статич. нагружении наблюдают петли Г. у. нерегулярной формы (рис. 1, г). Это связано с т. н. псевдоупругим поведением материалов, в к-рых под влиянием приложенных нагрузок происходит мартенситное превращение выше темп-ры термодинамич. равновесия "исходная фаза - мартенсит". При снятии нагрузки идёт упругообратное превращение "мартенсит - исходная фаза". В этом случае металлич. растворы ведут себя подобно резине, обнаруживая псевдоупругую деформацию величиной порядка единиц процентов.

Эксперим. изучение Г. у. проводят по прямым записям петель (с помощью механич., оптич., эл--измерит. аппаратуры, регистрирующей усилия и деформации), по затуханию свободных колебаний, по измерению резонансных пиков амплитуд вынужденных колебаний или ширины резонансной кривой. Удаётся измерять мощность резонансного возбуждения, сдвиг фаз между силами и перемещениями, оценивать теплоотдачу и проводить прямое калориметрирование выделенного тепла.

Явление Г. у. как проявление упругого несовершенства свойственно всем твёрдым телам и отмечалось даже при темп-pax, близких к абс. нулю. Оно является причиной затухания свободных колебаний самих упругих тел, затухания в них звука, уменьшения коэфф. восстановления при неупругом ударе и обусловливает необходимость затраты внеш. энергии для поддержания вынужденных колебаний. В зависимости от назначения деталей оно может рассматриваться как нежелательное (потери энергии) или как полезное (гашение колебаний в упругих демпферах или ограничение их в лопастях винтов, лопатках, дисках, валах турбин и двигателей).

Лит.; Зинер К., Упругость и неупругость металлов, пер. с англ., в кн.: Упругость и неупругость металлов, M., 1954: Микропластичность. [Сб. ст.1, пер. с англ., M., 1972; Hовик А., Берри Б., Релаксационные явления в кристаллах, пер. с англ., M., 1975; Xандрос Л., Арбузова И., Мартенситное превращение, эффект памяти и сверхупругость, в кн. Металлы, электроны, решетка, К., 1975; Головин С., Пушкар А., Микропластичность и усталость металлов, M., 1980. В. M. Розенберг.

  Предметный указатель