Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Тенденции развития искусственного интеллекта
Несомненно, все те, кому интересны новые технологии - ждут новостей о создании более современного и досконального искусственного интеллекта. Хотелось бы отметить, что по мере развития когнитивных технологий, подобные цели будут воплощаться еще быстрее. Реализация этих идей - сможет найти себя в реальной жизни Далее...

AI

голографйческое распознавание образов

ГОЛОГРАФЙЧЕСКОЕ РАСПОЗНАВАНИЕ ОБРАЗОВ - отнесение изображения (или его части) к одному из заранее определённых классов, напр. опознавание и указание координат буквы (или сочетания букв) на странице текста. Для решения задач этого типа предъявленное изображение сравнивается с эталонным, причём сравнение производится на основе вычисления ф-ции взаимной корреляции:

1119926-136.jpg

где f(x, у) - распределение освещённости (или яркости) в предъявленном изображении; S(х, у) - распределение освещённости, характеризующее эталонное изображение; 1119926-137.jpg - координаты взаимного сдвига; А - область существования ф-ций f и S. Величина максимума 1119926-138.jpg определяет степень сходства между f(x, уS (х, у), а положение максимума указывает положение той области на f(x, у), к-рая наиболее близка по структуре к S(х, у). Фиксируется такое значение максимума 1119926-139.jpg, начиная с к-рого система выдаёт сигнал: "изображение S'(x, у)содержится в f(x, у)".

Вычисление ф-ции взаимной корреляции двух изображений осуществляется средствами дискретной вычислительной техники, аналоговыми (или цифроана-логовыми) методами когерентной оптики и голографии. Наиб. употребительны 2 схемы голографич. корреляторов. Одна из них предложена К. Вандер Люгтом (К. Vender Lugt) (рис. 1). Пусть в плоскости P1 помещён транспарант с распределением оптич. плотности, пропорциональной S(x, у). Тогда при освещении транспаранта плоской волной когерентного света в фокальной плоскости линзы Л1 (плоскости P2) сформируется распределение амплитуды и фазы светового поля, про-порц. спектру пространств. частот ф-ции S (х, у), т. е. будет выполнено Фурье преобразование ф-ции S (х, у).

1119926-140.jpg

Пусть теперь на плоскость P2 падает под углом q плоская опорная волна, когерентная с волной, освещающей транспарант в плоскости P1. Тогда в плоскости P2 образуется стационарная интерференц. картина. Если её зарегистрировать, то мы получим голограмму Фурье объекта S (х, у). Эта голограмма представляет собой согласованный фильтр пространств. частот для сигнала S(x, у). Действительно, если поместить голограмму (после проявления) в плоскости P2, убрать опорную волну, поместить в P1 транспарант, отображающий ф-цию f(x, у), и осветить его когерентным светом, то в плоскости P3 (после обратного преобразования Фурье, выполняемого линзой Л2) образуется неск. изображений, одно из к-рых имеет освещённость, пропорц. ф-ции взаимной корреляции f(x,уS(х,у). Если f(x,y)=S(x,у)или ф-ция S(х,у)является обратным фурье-образом ф-ции f(x, у), то ф-ция взаимной корреляции обращается в ф-цию автокорреляции, а соответствующее изображение - в яркое пятно на тёмном фоне.

В др. схеме оптич. коррелятора (рис. 2) транспаранты, отображающие f(x, уS (х, у), помещаются во входной плоскости рядом друг с другом (параллельный ввод информации). На плоскости P2 происходит интерференция спектров f(х, уS(х, у)и регистрация интерференц. картины. Регистрирующая среда просвечивается когерентным светом (с помощью светоделителя), и после линзы Л2 в двух местах по обе стороны от оптич. оси формируется освещённость, пропорц. ф-ции взаимной корреляции S (х, уf(x, у).

1119926-141.jpg


В зависимости от поставленной задачи оптич. когерентные корреляторы могут быть созданы на базе разл. светомодулирующих и регистрирующих элементов. 1) Ввод информации фотогр. диапозитивом (транспарантом); фильтр выполняется заранее, также на фотогр. материале. Такие корреляторы отличаются высокой точностью, но не являются быстродействующими. 2) Ввод информации при помощи пространственно-временного модулятора света (управляемого транспаранта). Фильтр выполнен на фотогр. материале. В этом случае коррелятор может обрабатывать поступающую информацию в реальном времени, но оперативная смена фильтра невозможна. Это вынуждает вводить в состав прибора т. н. "библиотеку фильтров", набор фильтров для всех ожидаемых ситуаций. Это ведёт к значит. усложнению прибора, снижению его надёжности и не решает до конца проблему работы в реальном времени. 3) Ввод информации при помощи пространственно-временного модулятора, а запись фильтра на оперативной регистрирующей среде. В этом случае возможна быстрая перестройка коррелятора на опознавание любого объекта.

Среди пространств. модуляторов наиб. перспективны устройства, основанные на фоторефракции в кристаллах, а также на сочетании полупроводников и жидких кристаллов. Среди оперативных регистрирующих сред наиб. пригодны фототермопластики и термохромные слои на основе окислов V.

Г. р. о. применяется для сортировки и измерения размеров деталей в массовом производстве; в навигации летательных аппаратов по участкам местности; в информационно-поисковых системах; для автоматической классификации объектов в микроскопии и т. п. Важной областью является анализ и распознавание одномерных сигналов, развивающихся во времени (в технике радиоприёма, радиолокации, акустической локации).

Лит.: Василенко Г. И., Голографическое опознавание образов, M., 1977; Пространственные модуляторы света, под ред. С. Б. Гуревича, Л., 1977, Бугаев А. А., Захарченя В. П., Чудновский Ф. А., Фазовый переход металл - полупроводник и его применение, Л., 1979; Оптическая голография, под ред. Г. Колфилда, пер. с англ., т. 1-2, M., 1982; Баклицкий В. К., Юрьев A. H., Корреляционно-экстремальные методы навигации, M., 1982.

Ф. M. Субботин.

  Предметный указатель