Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Философия физики: резонанс и мироздание
Новый оригинальный взгляд на мироздание. Все формы материи удерживаются в состоянии устойчивости благодаря резонансу. Присутствие же его повсеместно – это основа всех процессов в природе и технике. В статье представлены некоторые аспекты действия резонанса в процессе развития живых и неживых структур. Далее...

Резонанс - основа мироздания

диссипативные системы

ДИССИПАТИВНЫЕ СИСТЕМЫ - динамич. системы, у к-рых энергия упорядоченного процесса переходит в энергию неупорядоченного процесса, в конечном счёте-в тепловую. В механич. Д. с. полная энергия (сумма кинетической и потенциальной) при движении непрерывно уменьшается (рассеивается), переходя в другие, немеханич. формы энергии (напр., в теплоту). Примеры Д. с.: твёрдые тела, между к-рыми действуют силы сухого или жидкостного трения; вязкая (или упруговязкая) среда, в к-рой напряжения зависят от скоростей деформаций; колебания электрич. тока в системе контуров, затухающие при наличии омического сопротивления из-за перехода энергии в джоулеву теплоту, и т. д. Практически все системы, с к-рыми приходится реально сталкиваться в земных условиях, являются Д. с. Рассматривать их как консервативные, т. е. как системы, в к-рых механич. энергия сохраняется, можно лишь в отд. случаях, приближённо отвлекаясь от ряда реальных свойств системы. Д. с. изучаются с макроскопич. точки зрения термодинамикой неравновесных процессов, с микроскопической - статистич. механикой неравновесных процессов или физической кинетикой.

Движение механич. Д. с. исследуют с помощью обычных ур-ний динамики для систем материальных точек, твёрдых тел или сплошных сред, включая в число действующих сил т. н. диссипативные силы или силы сопротивления. Однако интегрирование получающихся ур-ний бывает в большинстве случаев связано со значит. трудностями, особенно когда зависимость диссипативных сил от характеристик движения (напр., от скоростей) не выражается в простой аналитич. форме или когда точное решение задачи связано с необходимостью одновременно интегрировать уравнения движения среды и тела, движущегося в этой среде (задачи о движении тел в воде или воздухе, о пробивании брони и т. п.).

Изучение движения Д. с. значительно упрощается, когда скорости механич. перемещений настолько малы, что диссипативные силы можно считать линейными ф-циями обобщённых скоростей. В этих случаях диссипация энергии может быть охарактеризована т. н. диссипативной функцией, численно равной половине полной механич. энергии системы, рассеивающейся в единицу времени, и диссипативные силы могут быть просто выражены через эту ф-цию.

Лит. см. при ст. Динамика, Диссипативная функция, Кинетика физическая, Термодинамика неравновесных процессов.

С. M. Тарг.

  Предметный указатель