Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
ТВЕРДАЯ СВЕРХТЕКУЧЕСТЬ
Твердый гелий может вести себя как сверхтекучая жидкость.
Как известно, твердые тела сохраняют свою форму, а жидкости растекаются, принимая форму сосуда. Сверхтекучие жидкости представляют собой квинтэссенцию жидкого состояния: они способны без малейшего сопротивления протекать сквозь тончайшие каналы и даже «взбираться» по стенкам сосуда, чтобы вытечь из него. Далее...

Сверхтекучий гелий

диффузное рассеяние рентгеновских лучей

ДИФФУЗНОЕ РАССЕЯНИЕ РЕНТГЕНОВСКИХ ЛУЧЕЙ - рассеяние рентгеновских лучей веществом в направлениях, для к-рых не выполняется Брэгга - Вулъфа условие.

В идеальном кристалле упругое рассеяние волн атомами, находящимися в узлах периодич. решётки, вследствие интерференции происходит только при определ. направлениях дифракц. вектора Q, совпадающих с направлениями векторов обратной решётки G: Q= k2-k1, где k1 и k2 - волновые векторы падающей и рассеянной волн соответственно. Распределение интенсивности1119935-286.jpg рассеяния в пространстве обратной решётки представляет собой совокупность d-образных пиков Лауэ - Брэгга в узлах обратной решетки. Смещения атомов из узлов решётки нарушают периодичность кристалла, и интерференц. картина меняется. В этом случае в распределении интенсивности рассеяния, наряду с максимумами (сохраняющимися, если в искажённом кристалле можно выделить усреднённую периодич. решётку), появляется плавная составляющая I1(Q), соответствующая Д. р. р. л. на несовершенствах кристалла.

Наряду с упругим рассеянием, Д. р. р. л. может быть обусловлено неупругими процессами, сопровождающимися возбуждением электронной подсистемы кристалла, т. е. комптоновским рассеянием (см. Комптона эффект)и рассеянием с возбуждением плазменных колебаний (см. Плазма твердотельная). С помощью расчётов или спец. экспериментов эти составляющие можно исключить, выделив Д. р. р. л. на несовершенствах кристалла. В аморфных, жидких и газообразных веществах, где отсутствует дальний порядок, рассеяние только диффузное.

Распределение интенсивности I1(Q)Д. р. р. л. кристаллом в широкой области значений Q, соответствующих всей элементарной ячейке обратной решётки или нескольким ячейкам, содержит детальную информацию о характеристиках кристалла и его несовершенствах. Экспериментально I1(Q)может быть получено с помощью метода, использующего монохроматич. рентгеновское излучение и позволяющего поворачивать кристалл вокруг разных осей и изменять направления волновых векторов k1, k2, варьируя, т. о., Q в широком интервале значений. Менее детальная информация может быть получена Дебая - Шеррера методом или Лауэ методом.

В идеальном кристалле Д.р.р.л. обусловлено только тепловыми смещениями и нулевыми колебаниями атомов решётки и может быть связано с процессами испускания и поглощения одного или неск. фононов. При небольших Q осн. роль играет однофононное рассеяние, при к-ром возбуждаются или исчезают только фононы с волновым вектором q =Q-G, где G-вектор обратной решётки, ближайший к Q. Интенсивность такого рассеяния I(Q)в случае одноатомных идеальных кристаллов определяется ф-лой

1119935-287.jpg

где N - число элементарных ячеек кристалла, f-структурная амплитуда, 1119935-288.jpg -Дебая-Уоллера фактор, т - масса атома, 1119935-289.jpg-частоты и поляризац. векторы фононов j-й ветви с волновым вектором q. При малых q частоты 1119935-290.jpg, т. е. при приближении к узлам обратной решётки 1119935-291.jpg возрастает как 1/q2. Определяя 1119935-292.jpg для векторов q, параллельных или перпендикулярных направлениям [100], [110], [111] в кубических кристаллах, где 1119935-293.jpg однозначно задаются соображениями симметрии, можно найти частоты колебаний 1119935-294.jpg для этих направлений.

В неидеальных кристаллах дефекты конечных размеров приводят к ослаблению интенсивностей правильных отражений I0(Q)и к Д.р.р.л. I1(Q)на статич. смещениях 1119935-295.jpg и изменениях структурных амплитуд 1119935-296.jpg, обусловленных дефектами (s - номер ячейки вблизи дефекта, 1119935-297.jpg-тип или ориентация дефекта). В слабо искажённых кристаллах с невысокой концентрацией дефектов 1119935-298.jpg (1119935-299.jpg-число дефектов1119935-300.jpg в кристалле) и 1119935-301.jpg интенсивность Д.р.р.л.

1119935-302.jpg

где 1119935-303.jpg и 1119935-304.jpg-компоненты Фурье 1119935-305.jpg.

Смещения 1119935-306.jpg убывают с расстоянием r от дефекта как 1/r2, вследствие чего 1119935-307.jpg при малых q и вблизи узлов обратной решётки I1(Q)возрастает как 1/q2. Угл. зависимость I1(Q)качественно различна для дефектов разного типа и симметрии, а величина I1(Q)определяется величиной искажений вокруг дефекта. Исследование распределения I1(Q)в кристаллах, содержащих точечные дефекты (напр., междоузельные атомы и вакансии в облучённых материалах, примесные атомы в слабых твёрдых растворах), дает возможность получить детальную информацию о типе дефектов, их симметрии, положении в решётке, конфигурации атомов, образующих дефект, тензорах диполей сил, с к-рыми дефекты действуют на кристалл.

При объединении точечных дефектов в группы интенсивность I1 в области малых q сильно возрастает, но оказывается сосредоточенной в сравнительно небольших областях пространства обратной решётки вблизи её узлов, а при 1119935-308.jpg (R0 - размеры дефекта) быстро убывает.

Изучение областей интенсивного Д. р. р. л. даёт возможность исследовать размеры, форму и др. характеристики частиц второй фазы в стареющих растворах, дислокац. петли малого радиуса в облучённых или деформиров. материалах.

При значит. концентрациях крупных дефектов кристалл сильно искажён не только локально вблизи дефектов, но и в целом, так что в большей части его объёма 1119935-309.jpg . Вследствие этого фактор Дебая - Уоллера 1119935-310.jpg и интенсивность правильных отражений I0 экспоненциально убывают, а распределение I1(Q)качественно перестраивается, образуя несколько смещённые из узлов обратной решётки уширенные пики, ширина к-рых зависит от размеров и концентрации дефектов. Экспериментально они воспринимаются как уширенные брэгговские пики (квазилинии на дебаеграмме), а в нек-рых случаях наблюдаются дифракц. дублеты, состоящие из пар пиков I0 и I1. Эти эффекты проявляются в стареющих сплавах и облучённых материалах.

В концентриров. растворах, однокомпонентных упорядочивающихся кристаллах, сегнетоэлектриках неидеальность обусловлена не отд. дефектами, а флуктуац. неоднородностями концентрации и внутр. параметров и I1(Q)удобно рассматривать как рассеяние на q-й. флуктуац. волне этих параметров (q=Q-G). Напр., в бинарных растворах А - B c одним атомом в ячейке в пренебрежении рассеянием на статич. смещениях

1119935-311.jpg

где fА и fВ-атомные факторы рассеяния атомов А и В, с - концентрация 1119935-312.jpg -параметры корреляции, 1119935-313.jpg- вероятность замещения пары узлов, разделённых вектором решётки а, атомами А. Определив I1(Q)во всей ячейке обратной решётки и проведя преобразование Фурье ф-ции 1119935-314.jpg, можно найти 1119935-315.jpg для разл. координац. сфер. Рассеяние на статич. смещениях исключается на основании данных об интенсивности I1(Q) в неск. ячейках обратной решётки. Распределения I1(Q)могут быть использованы также для непосредств. определения энергий упорядочения раствора для разных а в модели парного взаимодействия и его термодинамич. характеристик. Особенности Д.р.р.л. металлич. растворами позволили развить дифракц. метод исследования ферма-поверхности сплавов.

В системах, находящихся в состояниях, близких к точкам фазового перехода 2-го рода и критич. точкам на кривых распада, флуктуации резко возрастают и становятся крупномасштабными. Они вызывают интенсивное критич. Д. р. р. л. в окрестностях узлов обратной решётки. Его исследование позволяет получить важную информацию об особенностях фазовых переходов и поведении термодинамич. величин вблизи точек перехода.

Диффузное рассеяние тепловых нейтронов на статич. неоднородностях аналогично Д. р. р. л. и описывается подобными ф-лами. Изучение рассеяния нейтронов даёт возможность исследовать также динамич. характеристики колебаний атомов и флуктуац. неодно-родностей (см. Неупругое рассеяние нейтронов).

Лит.: Джеймс Р., Оптические принципы дифракции рентгеновских лучей, пер. с англ., M., 1950; Иверонова В. И., Ревкевич Г. П., Теория рассеяния рентгеновских лучей, 2 изд., M., 1978; Иверонова В. И., Кацнельсон А. А., Ближний порядок в твёрдых растворах, M., 1977; Каули Дж., Физика дифракции, пер. с англ., M., 1979; Кривоглаз M А., Дифракция рентгеновских лучей и нейтронов в неидеальных кристаллах, К., 1983; его же, Диффузное рассеяние рентгеновских лучей и нейтронов на флуктуационных неоднородностях в неидеальных кристаллах, К., 1984.

M. А. Кривоглаз.

  Предметный указатель