Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
КАМЕННЫЕ ГИГАНТЫ
Газовые планеты-гиганты могут выгорать до твердого ядра.
Первые обнаруженные астрономами каменные планеты, обращающиеся вокруг далеких звезд, возможно, покрыты лавой. Если это действительно так, то ученым придется пересмотреть теорию планетообразования. Далее...

ГАЗОВЫЙ ГИГАНТ

инверсионный слой

ИНВЕРСИОННЫЙ СЛОЙ -слой у границы полупроводника, в к-ром знак осн. носителей заряда противоположен знаку осн. носителей в объёме полупроводника. Образуется у свободной поверхности полупроводника или у его контакта с диэлектриком, металлом или др. полупроводником (см. Гетеропереход ).Образование И. с. обусловлено воздействием на поверхность нормального к ней электрического поля, к-рое, согласно зонной теории, приводит к изгибу зон вблизи поверхности (см. Поля эффект ).Если, напр., в полупроводнике р-типа искривление таково, что уровень Ферми EF становится ближе к дну зоны проводимости Ec, чем к потолку валентной зоны Ev, то вблизи поверхности образуется И. с., в к-ром концентрация электронов больше концентрации дырок (рис. 1, а). И. с. всегда изолирован от осн. объёма полупроводника запорным слоем. И. с. у границы раздела полупроводник-диэлектрик (вакуум) изолирован с обеих сторон и аналогичен тонкой полупроводниковой плёнке, в к-рой в качестве осн. носителей выступают неосн. носители в объёме. В случае гетеропереходов И. с. изолирован запорными слоями с обеих сторон - один из них в "своём", а другой - в "чужом" полупроводнике.
1-83.jpg
Рис. 1. а - Зонная диаграмма полупроводника р-типа (р-Si) вблизи границы с диэлектриком (SiO2); инверсионный слий толщиной d имеет проводимость n-типа; Eс - дно зоны проводимости, Ev, - вершина валентной зоны, js - поверхностный потенциал электрич. поля, ЕF- уровень Ферми; б - Потенциальная яма для электрона при js>0; E0, E1 - уровни энергии электрона.

С помощью внеш. электрич. поля можно управлять концентрацией носителей в И. с. на единицу площади поверхности и его эфф. толщиной d. Источники этого поля - заряды, внедрённые в диэлектрич. слой, нанесённый на полупроводник или заряд спец. полевого электрода, изолированного от полупроводника тонким диэлектрнч. слоем (см. МДП-структура; рис. 2). Приближённое условие образования И. с. для рис.1, a имеет вид:
1-84.jpg
где Es - напряжённость электрич. поля на поверхности, Eg - ширина запрещённой зоны, lD - дебаевский радиус экранирования в объёме полупроводника, T - темп-pa, e - заряд электрона.
1-85.jpg
Pис. 2. МДП-структура.

Типичные толщины И. с. с вырожденным газом носителей d~40-100 Е. (толщины запорного слоя 103-104 Е). В случае гетероперехода часть носителей из объёма одною полупроводника проникает через барьер в другой, уравнивая EF в объёме обоих. В результате переноса заряда создаётся внутр. электрич. поле, приводящее к изгибу зон и образованию потенциальной ямы.
Электрическое квантование. Ограниченность И. с. в направлении нормали к поверхности приводит к квантованию энергии движения носителей:
1-86.jpg
где i=0, 1, ...-целые числа, k- волновой вектор в плоскости И. с., т* - эффективная масса носителей заряда (для простоты изотропная в плоскости И. с.). Из (*) видно, что каждое Ei является дном i-й электрич. подзоны. Переходы между разл. электрич. подзонами наблюдаются по резонансному поглощению излучения в дальнем ИК-диапазоне. При высоких концентрациях носителей в И. с. ns, т. е. при iд1, а также для И. с. с большой протяжённостью в глубь полупроводника уровни Ei сближаются до расстояния, к-рое меньше их собств. ширины или kT, и свойства И. с. становятся классическими. Электроны в И. с., если заселена только ниж. подзона i=0, ведут себя как идеальный двумерный электронный газ; плотность состояний в i-й подзоне на единичный интервал энергии (рис. 1, б):
1-87.jpg
Здесь E0 - дно подзоны, gv - число эквивалентных энергетич. зон в импульсном пространстве. Для И. с. в кристаллографич. плоскости (100) p-Si gv-2, для И. с. в p-GaAs gv=l. При малых поверхностных концентрациях ns, когда заполнена лишь осн. подзона (i=0):
1-88.jpg
Прямое доказательство двумерности электронного газа в тонких И. с. было впервые получено в экспериментах А. Б. Фаулера (А. В. Fowler), Фэнга (Fang), Хауарда (Howard) и Стайлса (Stiles), обнаруживших в 1966 квантовые осцилляции магнитосопротивления И. с. в Si, периодичные по концентрации, с периодом, зависящим только от нормальной компоненты Н (см. Шубникова-де Хааза эффект, Квантовые осцилляции в магнитном поле).
Кулоновское взаимодействие носителей в И. с. характеризуется отношением потенциальной энергии e2(pns)1/2 к ср. кинетической, к-рая при низких темп-рах для носителей в И. с. равна энергии нулевых колебаний 1-89.jpg . Предсказывалось, что при малых концентрациях носителей в И. с. возможен фазовый переход в упорядоченное состояние (см. Вигнеровский кристалл ).Эксперим. сведений о возникновении в И. с. вигнеровской кристаллизации пока (1987) не получено.
Применение. И. с. является осн. элементом полевого МДП-транзистора, запоминающих устройств и др. приборов микроэлектроники .На мн. характеристики И. с., в частности на электропроводность, существенно влияет рассеяние носителей заряж. примесями, фононами и шероховатостью поверхности полупроводника. И. с. служит также важным объектом исследований свойств двумерных проводников. Осн. физ. явления, изучаемые в И. с.: активационное поведение электропроводности (см. Андерсеновская локализация), отрицательное магнитосопротивление (см. Магнитосопротивление), эффект Шубникова - де Хааза, циклотронный резонанс и др. Лит.: Andо Т., Fowler А. В., Stern F., Electronic properties of two-dimensional systems, "Revs Mod. Phys.", 1982, v. 54, p. 437; см. также лит. при ст. Контактные явления в полупроводниках .3. С. Грибников, В. М. Пудалов.

  Предметный указатель