Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Технология производства экранов AMOLED
Развитие новой концептуальной технологии в производстве устройств отображения графической информации
Технология производства устройств отображения на жидких кристаллах или TFT уже очень долго и успешно применяется и находится на пике своей популярности. Но уже сейчас появилась, успешно разрабатывается и даже применяется AMOLED технология производства устройств отображения информации. И, возможно, что уже в самом скором будущем она вытеснит все свои жидкокристаллические аналоги. Далее...

AMOLED экран

ионизационная камера

ИОНИЗАЦИОННАЯ КАМЕРА - прибор для регистрации и спектрометрии ионизирующих частиц методом измерения величины ионизации (числа пар ионов), производимой этими частицами в газе. Простейшая И. к. представляет собой два электрода, помещённых в заполненный газом объём. Конструктивно электроды могут быть выполнены в виде плоского, цилиндрич. или сферич. конденсатора. Рабочим объёмом И. к. является пространство между электродами. Частицы ионизуют газ в рабочем объёме, и образовавшиеся электроны и ионы движутся под действием пост, электрич. поля Е в направлении электродов, создавая ток в цепи И. к. Ток измеряется регистрирующим устройством (рис. 1). Величина Е должна быть достаточно большой для предотвращения рекомбинации электронов и ионов. В области Е<E1 (рис. 2) скорость дрейфа электронов мала и часть из них рекомбинирует по дороге. В интервале Е1<Е<Е2 все электроны достигают анода (режим насыщения),
10-1.jpg
Рис. 1. Схема включения интегрирующей ионизационной камеры.
10-2.jpg
Рис. 2. Зависимость ионизационного тока I от приложенного электрического поля Е.

а при Е>Е2 начинается процесс лавинного размножения ионов вблизи анода. И. к. отличается от др. газовых детекторов (пропорциональных камер, Гейгера счетчиков и др.) тем, что в ней не используется механизм газового усиления, т. е. размножение ионов за счёт лавинообразного процесса вблизи анода. Ток через И. к. в области насыщения I0 пропорционален энергии E, выделяемой ионизующей частицей в объёме И. к., т. е. потоку частиц j, падающему на И. к.:10-3.jpg где е - заряд электрона, E0 - энергия, затрачиваемая на образование одной электрон-ионной пары. Режим насыщения достигается при достаточно большой скорости дрейфа электронов и ионов. Скорость увеличивают в 10-40 раз, добавляя к чистому Ar 2,5 - 30% многоатомных газов (Н2, СН4 и др.). При работе с чистыми многоатомными газами для насыщения требуются существенно большие Е. Ионизирующие частицы могут проникать в рабочий объём И. к. через тонкие окна либо непосредственно через стенки камеры. Иногда радиоакт. источник помещают внутрь И. к. в виде тонкого слоя на поверхности электродов или вводят в виде радиоакт. примеси к газу. В др. случаях ионизирующие частицы образуются непосредственно в рабочем объёме камеры в результате ядерных реакций, идущих под действием внеш. облучения в наполняющем И. к. газе, либо в мишени на поверхности электрода [1, 2, 3]. Различают импульсные и интегрирующие И. к. Первые И. к. служат для регистрации отд. импульсов, вызываемых каждой ионизирующей частицей. Если поток частиц через И. к. достаточно велик, импульсы на выходе сливаются и через камеру протекает ток I (рис. 1), к-рый пропорционален суммарному ср. энерговыделелию в И. к. в единицу времени. Интегрирующие И. к. применяются в радиометрии для измерения активности радиоакт. препаратов и для определения энергии излучения, поглощённой в единице массы вещества (см. Доза
10-4.jpg
Рис. 3. Схема включения импульсной ионизационной камеры.

излучения) [2], а также для измерения н контроля интенсивности выведенных из ускорителей пучков заряж. частиц. В импульсных И. к. длительность импульса зависит от времени дрейфа электронов и постоянной времени RС, где С=Ску+С', где Ск - ёмкость И. к., Су - входная ёмкость усилителя, С' - паразитная ёмкость подводящих проводов, R - эквивалентное сопротивление нагрузки. Время дрейфа зависит от состава газовой смеси, приложенного напряжения и геометрии И. к. (рис. 3).
10-5.jpg
Рис. 4. Трёхэлектродная импульсная ионизационная камера.

Импульсные И. к. широко используются в ядерной физике. Возможности импульсных И. к. возросли в связи с прогрессом в технике усиления слабых сигналов, связанным с появлением малошумящих полевых транзисторов. В качестве импульсной И. к. обычно используют И. к. с сеткой (рис. 4). Рабочим объёмом является объём между катодом и сеткой. Образовавшиеся в рабочем объёме электроны под действием электрич. поля E(1) дрейфуют к сетке, проходят сквозь сетку, увлекаемые более сильным полем E(2), действующим между анодом и сеткой, и собираются на аноде. Собирание электронов происходит за неск. мкс. За это же время положит, ионы, обладающие в 103 раз меньшей подвижностью, практически остаются на месте. Сетка экранирует анод от индукц. воздействия положит, ионов. Поэтому анодный сигнал оказывается пропорциональным собранному на аноде заряду, к-рый, в свою очередь, пропорционален энергии ионизирующей частицы. Такая И. к. позволяет также определить пространств, положение следа (трека) частицы путём регистрации катодного сигнала, времени его задержки по отношению к анодному и фронта нарастания анодного сигнала. Разбивая анод на неск. частей, можно получить информацию о длине трека. Энергетич. разрешение импульсных И. к. определяется шумом усилителя сигналов и флуктуацией числа пар ионов, образованных ионизирующими частицами фиксированной энергии (флуктуации Фано). Флуктуации Фано можно уменьшить, подбирая состав газа (Не+Аr; Ar+C2H2 [4]). Лучшее разрешение, достигнутое в И. к. при измерении спектра a-частиц 12 кэВ (полная ширина линии на половине высоты; при энергии a-частиц Eа=5,5МэВ. При этом газнаполнитель импульсной И. к. должен иметь высокую степень чистоты относительно эл--отрицат. примесей (O2, Н2O). Импульсные И. к. применяются при исследовании альфа-распада ядер (измерение энергетич. спектров a-частиц, угл. a-g-корреляций, детектирование слабых a-активностей); при исследовании деления ядер (измерении энергетич. и угл. распределений осколков спонтанного или вынужденного деления ядер; поиск новых спонтанно делящихся ядер [5]); при исследовании мюонного катализа ядерного синтеза; в спектрометрии заряж. продуктов катализируемой мюонами реакции d-d-синтеза в наполненной дейтерием И. к. высокого давления [6]; при исследовании упругого рассеяния частиц высокой энергии (спектрометрия ядер отдачи, возникающих в процессе рассеяния частиц высокой энергии на ядрах Н, D или Не, наполняющих рабочий объём И. к. [7]); в качестве т. н. DE - детектора для идентификации ядерных частиц [8]. Лит.: 1) Векслер В., Грошев Л., Исаев Б., Ионизационные методы исследования излучений, 2 изд., М.- Л., 1950; 2) Аглинцев К. К., Дозиметрия ионизирующих излучений, 2 изд., М., 1957; 3) Wilkinsоn D. H., lonization chambersand counters, Camb., 1950; 4) Alkhazov G. D., Komar A. P., Vрrоbev A. A., lonization fluctuations and resolution of ionization chambers and semiconductor detectors, "Nucl. Instr. and Meth.", 1967, v. 48, p. 1; 5) Ivanоv M. P. и др.. Study of 238U spontaneous fission using a double ionization chamber, там же, 1985, v. A234, p. 152; 6) Balin D. V. и др., Experimental investigation of the muon catalyzed dd-fusion, "Phys. Lett.", 1984, v. 141 B, N 3/4, p. 173; 7) Вurq J. P. и др., Soft p-pand pp elastic scattering in the energy range 30 to 345 GeV, "Nucl. Phys.", 1983, v. B217, p. 285; 8) Fulbright H. W., lonization chambers, "Nucl. Instr. and Meth.", 1979,v. 162, N 1/3, p. 21. А. А. Воробьев, Г. А. Королев.

  Предметный указатель