Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Как быстро изготовить печатную плату для вашей конструкции.
Как своими руками, не покупая дорогостоящее хлорное железо, не применяя кислоты, при работе с которыми, происходят токсичные выделения, изготовить быстро и качественно печатную плату для вашей конструкции. Далее...

Изготовление печатных плат

кинетические уравнения

КИНЕТИЧЕСКИЕ УРАВНЕНИЯ для плазмы - замкнутая система ур-ний для одночастичных ф-ций распределения частиц плазмы по координатам г и скоростям 2505-1.jpg (импульсам2505-2.jpg) совместно с Максвелла уравнениями для ср. напряжённостей эл--магн. полей, создаваемых частицами плазмы. Кинетич. (статистич.) подход к описанию состояния плазмы часто играет важную роль в описании макроскопич. свойств плазмы, к-рые не могут быть выявлены при гидродинамич. подходе. Напр., возникновение ленгмюровских волн при движении двух электронных пучков навстречу друг другу с равными скоростями описывается кинетич. теорией при рассмотрении пучков как двух жидкостей. Если же электроны в данном примере рассматривать при гидродинамич. подходе как единую жидкость с равной нулю ср. скоростью, то возникновение ленгмюровской неустойчивости нельзя предсказать.

Наиб. простыми являются К. у. для полностью ионизованной электронно-ионной плазмы - ур-ния для ф-ций распределения 2505-3.jpg электронов (а=е), однозарядных ионов (a=i)и напряжённостей электрич. 2505-4.jpg и магн. 2505-5.jpg полей. Эти ф-ции являются первыми моментами соответствующих микроскопич. случайных ф-ций (см. Моменты: )микроскопич. фазовых плотностей 2505-6.jpg и микроскопич. напряжённостей полей 2505-7.jpg и 2505-8.jpg. Точные ур-ния для ф-ций fa, E и В имеют вид

2505-9.jpg

Они не являются ещё замкнутыми, т. к. "интегралы столкновений" Ia(r, p, t)определяются вторыми моментами флуктуации случайных величин2505-10.jpg

2505-11.jpg

Ур-ния (1) справедливы и для релятивистской плазмы; в этом случае импульс и скорость связаны равенством2505-12.jpg

Для кулоновской плазмы, в к-рой потенциал взаимодействия заряж. частиц Фаb, определяется законом Кулона 2505-13.jpg , интегралы Iа могут быть выражены через двухчастичные корреляц. ф-ции заряж. частиц gab:

2505-14.jpg

Если ф-цию gab выразить через Iа, то получается замкнутая система ур-ний для ф-ций fa, Е, В. Это оказывается возможным, напр., для разреженной плазмы при не очень больших отклонениях от состояния равновесия, когда осн. роль играют мелкомасштабные флуктуации с радиусом корреляции 2505-15.jpg (дебаевского радиуса экранирования). В разреженной плазме число частиц ND в сфере с дебаевским радиусом много больше единицы. По этой причине, в отличие от разреженного газа, где осн. роль играют парные столкновения, в разреженной плазме с эфф. радиусом взаимодействия rD взаимодействие носит дальнодействующий коллективный характер. (Поэтому слова "интегралы столкновений" поставлены выше в кавычках.) Если длина релаксации lpел ("длина свободного пробега") и время релаксации ("время свободного пробега") 2505-16.jpg, определяемые интегралами столкновений в разреженной плазме, достаточно велики по сравнению с rD, 2505-17.jpg, т. е.

2505-18.jpg

то ф-ции gab удаётся выразить через Iа.

Для нерелятивистской классич. (неквантовой) плазмы интеграл столкновений в наиболее часто употребляемой форме, предложенной Ландау, имеет вид

2505-19.jpg

Область интегрирования по k здесь ограничена условиями 2505-20.jpg (lЛ=e2/kT - т. н. длина Ландау). Левое неравенство есть следствие условия слабого взаимодействия, к-рое используется при выводе (5), а правое предполагает малую роль крупномасштабных флуктуации с радиусом корреляций 2505-21.jpg. Это оправдано при условии близости к равновесному состоянию. Используется и более общее выражение для интеграла столкновений (т. н. форма Балеску - Лепарда), в к-ром учитывается влияние электрич. поляризуемости плазмы. При этом отпадает необходимость в условии 2505-22.jpg . Интегралы столкновений (5) слабо зависят от выбора границ области интегрирования по k, т. к. величины lЛ и rD в окончат, результатах входят лишь под знаком логарифма (кулоновский логарифм).

Интегралы столкновений Iа для плазмы обладают свойствами

2505-23.jpg

к-рые обеспечивают сохранение полных плотности числа частиц, плотности импульса и плотности кинетич. энергии идеальной плазмы, а также возрастание энтропии при установлении равновесного состояния в изолированной плазме (Больцмана Н-теорема). Возможно обобщение К. у. на случай неидеальной плазмы, когда взаимодействие заряж. частиц определяет не только релаксац. процессы, но и даёт вклад в термодинамич. ф-ции.

К. у. для плазмы существенно упрощаются в двух предельных случаях. Для случая, когда длины свободных пробегов lpел и соответствующие времена релаксации2505-24.jpgвелики по сравнению с характерными параметрами L и Т задачи, столкновениями частиц можно пренебречь, учитывая лишь коллективное взаимодействие частиц через ср. (самосогласованные) поля. Это т. н. бесстолкновительное приближение приводит к ур-нию Власова:

2505-25.jpg

Ур-ние Власова само по себе является обратимым. Однако поскольку бесстолкновительное приближение справедливо лишь для ограниченной плазмы, то необратимость возникает через диссипативные граничные условия, а также при усреднении нач. условий по бесконечно малому интервалу времени при переходе от микроскопич. фазовой плотности к одночастичной ф-ции распределения. Бесстолкновительное приближение имеет широкую область применения - от высокотемпературной плазмы термоядерных установок до кос-мич. плазмы.

Во втором предельном случав, когда 2505-26.jpg и2505-27.jpg2505-28.jpg , возможен переход от К. у. для плазмы к соответствующим газодинамич. ур-ниям, учитывающим столкновения (см. Кинетическое уравнение Болъцмана).

Для описания сильно неравновесных процессов К. у. для плазмы уже недостаточны, т. к. существенными оказываются крупномасштабные флуктуации распределений частиц и напряжённостей поля. Простейшим примером их учёта служат ур-ния квазилинейной теории плазмы, используемые для описания слабой турбулентности плазмы.

Лит.: Ландау Л. Д., Кинетическое уравнение в случае кулоновского взаимодействия, "ЖЭТФ", 1937, т. 7, с. 203; Власов А. А., О вибрационных свойствах электронного газа, "ЖЭТФ", 1938, т. 8. с. 291; Климонтович Ю. Л., Статистическая теория неравновесных процессов в плазме, М., 1964; его же, Кинетическая теория неидеального газа и неидеальной плазмы, М., 1975; его же. Статистическая физика, М., 1982; Б а л е с к у Р., Статистическая механика заряженных частиц, пер. с англ., М., 1967; Кадомцев Б. Б., Коллективные явления в плазме, М., 1976; Арцимович Л. А., Сагдеев Р. 3., Физика плазмы для физиков, М., 1979. Ю. Л. Климонтович.

  Предметный указатель