Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Новинка для обучения
Чтобы приучить себя к усидчивости, закуй себя в кандалы
Родители всех детей на свете не раз и не два задумывались, как приучить своих детей к усидчивости, аккуратности и внимательности при выполнении школьных домашних заданий. Весьма интересный и неординарный способ нашел Emilio Alarc дизайнер из Испании. Study Ball (обучающий мяч) - ножные кандалы с гирей и циферблатом, на котором устанавливается время их отключения. Браслет закрепляется на ноге, устанавливается время, предположительно выбранное на изучения данной темы или дисциплины, нажимается кнопка пуска и все... Далее...

Study Ball

Study Ball

комптона эффект

КОМПТОНА ЭФФЕКТ (комптон-эффект, комптонов-ское рассеяние) - рассеяние эл--магн. волны на свободном электроне, сопровождающееся уменьшением частоты. Эффект наблюдается для больших частот рассеиваемого эл--магн. излучения (в рентг. области и выше). Он проявлялся уже в первых опытах по рассеянию рснтг; лучей на свободных электронах, но впервые с требуёмой тщательностью был изучен А. Комп-тоном (A. Compton) в 1922-23. Исторически К. э. явился одним из гл. свидетельств в пользу корпускулярной природы эл--магн. излучения (в частности, света). С точки зрения классич. электродинамики рассеяние с изменением частоты невозможно.

Элементарная теория эффекта была дана А. Комп-тоном и независимо от него П. Дебаем (P. Debye) на основе представления о том, что рентг. излучение состоит из фотонов .Для объяснения эффекта приходилось предположить, что фотон обладает как энергией 2519-1.jpg , так и импульсом 2519-2.jpg (здесь v и 2519-3.jpg- частота и длина волны света, п - единичный вектор в направлении распространения волны).

Комптон рассмотрел упругое рассеяние фотона на свободном покоящемся электроне (что является хорошим приближением для рассеяния фотонов рентг. лучей на атомных электронах лёгких атомов). При рассеянии фотон передаёт электрону часть энергии и импульса, что соответствует уменьшению частоты (увеличению длины волны) рассеиваемого света. Из законов сохранения энергии и импульса он получил ф-лу для сдвига длины волны:

2519-4.jpg

где 2519-5.jpg - длины волн до и после рассеяния, 2519-6.jpg - угол рассеяния, mе - масса электрона. Параметр 2519-7.jpg наз. комптоновской длиной волны электрона и равен 2,4*10-10 см. Из кинематики процесса легко также определить энергию и импульс электрона отдачи.

Поскольку ф-ла (*) основана только на кинематпч. соображениях, она оказывается справедливой и в точной теории. Из неё следует, что относит. изменение длины волны 2519-8.jpg велико только для коротких длин волн, когда2519-9.jpg

Данная Комптоном упрощённая теория эффекта не позволяет определить все характеристики компто-новского рассеяния, в частности зависимость интенсивности рассеяния от 2519-13.jpg . Точная релятивистская теория К. э. была сформулирована в рамках квантовой электродинамики. (КЭД). Во втором порядке теории возмущений К. э. в КЭД описывается двумя Фейнмана диаграммами, изображёнными на рис. 1. Вычисление по этим диаграммам (с использованием Дирака уравнения для электрона) дифференц. сечения К. э. приводит к Клейна - Нишины формуле, хорошо согласующейся с опытом.

2519-10.jpg

Рис. 1. Диаграммы Фсйнмана для Комптона эффекта: е, 2519-11.jpg и 2519-12.jpg - электрон и фотон соответственно в начальном и конечном состояниях; е* - виртуальный электрон в промежуточном состоянии.


Для К. э. при высоких энергиях характерна острая направленность рассеянного излучения по направлению первичного фотона; с ростом энергии фотонов эта угл. асимметрия увеличивается. Полное эфф. сечение комптоновского рассеяния (полученное интегрированием по углам ф-лы Клейна - Нишины) падает с увеличением 2519-14.jpg (рис. 2).

К. э. является одним из осн.. механизмов, определяющих потери энергии при прохождении 2519-15.jpg-излучения через вещество. Абс. сечение К. э., а также его соотношение с сечениями фотоэффекта и рождения пар электрон-позитрон в реальных веществах сильно зависят от ат. номера Z. На рис. 2 показано соотношение указанных процессов в свинце. В пределе нулевых частот полное сечение К. э. на отд. электроне переходит в сечение классич. (томсоновского) рассеяния 2519-16.jpg , где 2519-17.jpg=2,8*10-13 см - т. н. классич. радиус электрона. При этом 2519-18.jpg=6,652519-20.jpg 10-25 см2. Как видно из рис. 2, при энергиях 2519-21.jpg в интервале 0,5-5 МэВ К. э. даёт осн. вклад в потери энергии фотонами в свинце (в воздухе соответствующий интервал составляет 0,1-20 МэВ).


2519-22.jpg

Рис. 2. Зависимость полного сечения о в свинце от энергии фотона в единицах энергии покоя электрона mеc2 для Комптона эффекта (1), фотоэффекта (2), рождения пар е+ е- (3); по оси ординат отложена величина линейного поглощения фотонов 2519-23.jpg = N2519-24.jpg(N - концентрация атомов вещества).

Если электрон, на к-ром рассеивается фотон, не покоится, а является ультрарелятивистским с энергией 2519-25.jpg , то при столкновении электрон теряет, а фотон приобретает энергию и длина волны света при столкновении уменьшается (частота увеличивается). Такое явление наз. обратным к о м п т о н-эффектом. Если направления скоростей нач. фотонов распределены изотропно, то ср. энергия рассеянных фотонов 2519-26.jpg при обратном К. э. определяется соотношением

2519-27.jpg

Обратный К. э. является гл. механизмом потерь энергии электронами, движущимися в магн. поле космич. радиоисточников. Он является также причиной возникновения изотропного рентг. космич. излучения с энергией 2519-28.jpg 50-100 кэВ, представляющего собой фотоны отдачи при рассеянии релятивистских электронов на изотропном микроволновом космич. фоновом излучении.

В процессе рассеяния электрон может поглотить один, а излучить в конечном состоянии не один (как в случае обычного К. э.), а два фотона. Это явление наз. двойным комптон-эффектом. Оно было теоретически исследовано В. Гайтлером (W. Heit-ler) и Л. Нордхеймом (L. Nordheim) в 1934. Возможен также процесс re-кратного К. э., когда в конечном состоянии излучается п фотонов. Его сечение, вообще говоря, подавлено фактором 2519-29.jpg . Но в случае, когда излучаемые фотоны являются мягкими и непосредственно не регистрируются, такой процесс неотличим от обычного К. э. и имеет большое сечение. Поэтому учёт поправок от n-кратного К. э. важен для интерпретации данных по обычному К. э.

Если К. э. происходит во внеш. поле интенсивной эл--магн. волны [где в каждом конечном интервале частоты 2519-30.jpg содержится много фотонов], то возможен процесс, в к-ром происходит как поглощение из внеш. поля, так и испускание электроном большого числа фотонов. Такой процесс является сложной ф-цией напряжённости внеш. электрич. поля Е и наз. нелинейным комптон-эффектом. Он происходит с заметной вероятностью при 2519-31.jpg, где E0 имеет масштаб полей на электронной орбите атома водорода. Такие напряжённости электрич. поля пока недостижимы в земных условиях, но существуют на поверхности сверхплотных звёзд.

Комптоновское рассеяние происходит также на др. заряж. частицах, в частности на протоне, однако вследствие большой массы протона эффект заметен лишь при очень высоких энергиях 2519-32.jpg-квантов.

Комптоновское рассеяние используется в исследованиях 2519-33.jpg-излучения атомных ядер, а также для измерения поляризуемости элементарных частиц и ядер и лежит в основе принципа действия нек-рых гамма-спектрометров.

Лит.: Шпольский Э. В., Атомная физика, 7 изд., т. 1-2, М., 1984; Альфа-, бета- и гамма-спектроскопия, пер. с англ., в. 1-4, М., 1969; Л е н г К., Астрофизические формулы, пер. с англ., т. 1-2, М., 1978; Квантовая электродинамика явлений в интенсивном поле, М., 1979. М. В. Терентъев.

К. э. на связанном электроне. В рассеянии фотона связанным (атомным или молекулярным) электроном, в отличие от случая рассеяния на свободном электроне, выделяют три след. канала: рэлеевское рассеяние, при к-ром состояние мишени не меняется; комбинационное рассеяние света, в результате к-рого мишень переходит в др. связанное состояние; комптонов-ское рассеяние, сопровождающееся ионизацией.

Эффект связи электрона в атоме в нач. состоянии приводит в процессе комптоновской ионизации к уши-рению комптоновской линии, т. е. к появлению распределения по частотам 2519-34.jpg вылетающих фотонов при фиксированном угле рассеяния 2519-35.jpg [1]. Взаимодействие электрона с ионным остатком в конечном состоянии приводит к сдвигу максимума комптоновской линии в сторону высоких частот, тем большему, чем больше энергия связи 2519-36.jpg. При любых нач. энергиях фотона ширина комптоновской линии 2519-37.jpg пропорц. 2519-38.jpg . В нерелятивистской области энергий2519-39.jpg пропорц. частоте 2519-40.jpg налетающего фотона,2519-41.jpg2519-42.jpg , а сдвиг её максимума порядка 2519-43.jpg [2519-44.jpg - постоянная тонкой структуры, Zэфф - эфф. заряд ядра (в единицах элементарного заряда e) для рассматриваемой электронной оболочки].

2519-49.jpg

Рис. 3. Диаграмма Фейнмана типа "чайка"; двойная сплошная линия описывает электрон в поле атома, волнистая линия- фотон.

В области энергий 2519-45.jpg электрону в процессе комптоновской ионизации передаётся энергия, значительно большая энергии связи в атоме. Это позволяет интерпретировать рассеяние фотона как процесс, происходящий на свободном электроне, имеющем точно такое же распределение по импульсам, как в связанном состоянии. Такое рассмотрение в рамках импульсного приближения является теоретич. основой нерелятивистского метода изучения электронной структуры атомов, молекул и кристаллов - метода комптоновских, профилей [2].

В области энергий 2519-46.jpg амплитуда комптон-эффекта на слабо связанном (2519-47.jpg) электроне описывается диаграммой Фейнмана типа "чайка" (рис. 3), в к-рой оператор взаимодействия 2519-48.jpg выражается через волновые векторы k, 2519-50.jpgи поляризации е, 2519-51.jpgпадающего и рассеянного фотонов и оператор импульса 2519-52.jpg:

2519-53.jpg

2519-54.jpg (i = 1, 2, 3) -Дирака матрицы,_2519-55.jpg В области энергий 2519-56.jpg на сечение К. э. определяющее влияние оказывает взаимодействие электрона с ионным остатком в конечном состоянии, т. к. из-за приближённого выполнения закона сохранения импульса (узости комптоновской линии и малости её сдвига) вылетающий электрон обладает в среднем относительно малой энергией. При таких энергиях фотонов процесс комптоновской ионизации интерпретируется как "встряска" типа рассеяния (см. Внезапных возмущений метод). В соответствии с концепцией "встряски" [3, 4] гл. характеристикой угл. распределения рассеянных фотонов в К. э. на связанном электроне 2519-57.jpg является подходящим образом выбранный "встрясочный" параметр [2]:

2519-58.jpg

где b = 1+ 2519-59.jpg . Величиной параметра N определяются отношения эфф. сечений2519-60.jpg2519-61.jpg , показанных для К-электронов на рис. 4.

2519-62.jpg

Рис. 4. Угловые распределения рассеянных фотонов2519-63.jpg в процессе комптоновской ионизации К-оболочек лёгких элементов (штрих-пунктирные линии; re= е2/2 - классический радиус электрона); сплошные линии - расчёт по формуле Клейна - Нишины.

Эти отношения как ф-ции параметра N оказываются универсальными не только для К-электронов, но и для каждой конкретной атомной оболочки.

В связи с прогрессом лазерной техники в ряде исследований ставятся вопросы о влиянии сильных эл--магн. полей на разл. элементарные атомные процессы. Имеется целый класс эффектов вынужденного поглощения или испускания фотонов внеш. лазерного поля, происходящих на фоне осн. процесса, к-рым может быть фотоионизация, комптоновская ионизация, тор-можение электрона на атоме и т. д. [4]. В области параметров, где сечения этих вынужденных процессов велики, они могут быть интерпретированы как процессы "встряски". В случаях, когда параметр N не содержит постоянной Планка (напр., в процессах испускания и рассеяния фотонов классич. электроном), вынужденные эффекты имеют классич. объяснение при любом чпсле испускаемых (поглощаемых) лазерных фотонов. Так, процесс комптоновского рассеяния жёсткого фотона с энергией2519-64.jpg на электроне, помещённом в интенсивное низкочастотное (с частотой 2519-65.jpg) лазерное поле, с классич. точки зрения описывается как высокочастотное излучение электрона, находящегося в поле двух эл--магн. волн [4].

Лит.: 1) Зоммерфельд А., Строение атома и спектры, пер. с нем., т. 2, М., 1956; 2) Б у ш у е в В. А., Кузьмин Р. Н., Неупругое рассеяние рентгеновского и синхро-тронного излучений в кристаллах, когерентные эффекты в неупругом рассеянии, "УФН", 1977, т. 122, с. 81; 3) Дыхне A.M., Юдин Г. Л., "Встряхивание" квантовой системы и характер стимулированных им переходов, "УФН", 1978, т. 125, с. 377; 4) Дыхне А. М., Юдин Г. Л., Вынужденные эффекты при "встряске" электрона во внешнем электромагнитном поле, "УФН", 1977, т. 121, с. 157. Г.Л.Юдин.

  Предметный указатель