Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Технология производства экранов AMOLED
Развитие новой концептуальной технологии в производстве устройств отображения графической информации
Технология производства устройств отображения на жидких кристаллах или TFT уже очень долго и успешно применяется и находится на пике своей популярности. Но уже сейчас появилась, успешно разрабатывается и даже применяется AMOLED технология производства устройств отображения информации. И, возможно, что уже в самом скором будущем она вытеснит все свои жидкокристаллические аналоги. Далее...

AMOLED экран

конвективный теплообмен

КОНВЕКТИВНЫЙ ТЕПЛООБМЕН - необратимый процесс переноса теплоты в движущихся средах с неоднородным полем темп-ры, обусловленный совместным действием конвекции и молекулярного движения.

Наиб. важный для практики случай - К. т. между движущейся средой и поверхностью её раздела с др. средой (твёрдым телом, жидкостью или газом) - наз. конвективной теплоотдачей. Вследствие вязкости движущейся среды она "прилипает" к поверхности раздела, в результате местная скорость среды относительно этой поверхности равна нулю. Поэтому плотность конвективного теплового потока, подходящего к поверхности раздела (или отходящего от неё), может быть описана с помощью закона теплопроводности (закона Фурье):

2519-115.jpg

где 2519-116.jpg - коэф. молекулярной теплопроводности, Т - темп-pa среды. Если 2519-117.jpg характеризует физ. свойства среды, то градиент темп-ры формируется под действием конвективного движения среды. Чем интенсивнее конвекция, тем больше градиент темп-ры. Определение градиента темп-ры у стенки обычно является предметом теоретич. или эксперим. исследования. В зависимости от вида конвективного движения различают К. т. при вынужденной, свободной и капиллярной конвекциях. Могут существовать и смешанные виды К. т.

Теоретич. описание процесса К. т. строится на основе ур-ния сохранения энергии в среде:

2519-118.jpg

где 2519-119.jpg - плотность среды, р - давление, ср - уд. теплоёмкость при пост. давлении,2519-120.jpg- коэф. динамич. вязкости, Ф - диссипативная функция, учитывающая нагрев среды из-за внутр. трения, Q - внутр. тепловыделение в единице объёма среды, 2519-121.jpg - полная, или субстанциональная, производная по времени т, представляющая собой сумму локальной и конвективной составляющих:

2519-122.jpg

(х, у, z - пространств. координаты, и, 2519-123.jpg, 2519-124.jpg - составляющие вектора скорости вдоль осей этих координат).

Для решения ур-ния (2) необходимо знать граничные условия на поверхности раздела и в окружающем пространстве, а также в случае зависимости процесса от времени - нач. условия. Для определения входящих в ур-ние (2) составляющих скорости среды дополнительно привлекаются ур-ния сохранения кол-ва движения в проекции на разл. оси координат.

К. т. может осложняться протеканием в среде или на поверхности раздела разных физ--хим. превращений (кипение, плавление, конденсация, диссоциация, ионизация и т. п.). В этих случаях для теоретич. описания К. т. используются дополнит. ур-ния, отражающие кинетику отд. физ--хим. процессов или условия термодинамич. равновесия, напр. законы действующих масс для разл. хим. реакций. Если при этом отд. физ--хим. превращения протекают на поверхности раздела и имеет место суммарный расход массы через эту поверхность, то вместо ур-ния (1) для описания плотности теплового потока к поверхности раздела используется более общее ур-ние:

2519-125.jpg

где 2519-126.jpg- скорость среды в направлении нормали к поверхности, Я - энтальпия среды при темп-ре поверхности, 2519-127.jpg - относит. массовые концентрации отд. хим. компонентов, 2519-128.jpg - их скорости диффузии в направлении нормали к поверхности, 2519-129.jpg - их энтальпии при темп-ре поверхности раздела, вычисленные с учётом энергии образования этих компонентов при стандартных условиях.

Подходящий к поверхности раздела конвективный тепловой поток удобно представлять в виде закона Ньютона:

2519-130.jpg

где 2519-131.jpg - коэф. конвективного теплообмена, Т2519-132.jpg - темп-ра поверхности раздела, Тс - характерная темп-ра среды. В качестве Тс при обтекании тела безграничным равномерным потоком принимается темп-pa внеш. среды (при больших скоростях среды - темп-pa торможения, или т. н. "равновесная" темп-pa; см. Аэродинамический нагрев), при течении в трубах или процессах К. т. в замкнутых сосудах - среднемассовая темп-ра среды.

Описание процесса К. т. может быть представлено в безразмерном виде с использованием подобия теории. Интенсивность К. т. характеризуется безразмерным критерием - Нусселъта числом, где L - характерный размер. В случае К. т. при вынужденной конвекции осн. определяющим критерием является Рейнолъдса число 2519-133.jpg, где V - скорость среды, 2519-134.jpg - коэф. динамич. вязкости. Кроме числа Рейнольдса влияние на К. т. оказывает Прандтля число 2519-135.jpg= =2519-136.jpg и т. н. температурный фактор2519-137.jpg учитывающий переменность теплофиз. свойств среды при изменении её темп-ры. В результате критериальный закон К. т. при вынужденной конвекции имеет вид

2519-138.jpg

Помимо перечисленных основных определяющих критериев на К. т. при вынужденной конвекции могут оказывать влияние и др. факторы. В частности, при больших скоростях полёта тела в атмосфере важную роль играет Маха число.

Вид зависимости (5) определяется геом. формой поверхности раздела и режимом её обтекания, в частности режимом течения в пограничном слое (ламинарным или турбулентным), наличием и положением зон отрыва потока (см. Отрывное течение ).Критериальные законы К. т. в виде (5) могут быть получены как на основании теоретич. расчётов [напр., численным решением системы ур-ний (2) и др.], так и экспериментально - путём исследования теплоотдачи к моделям подобной геом. формы в представляющем интерес диапазоне изменения числа Рейнольдса и др. определяющих критериев. Напр., средний коэф. К. т. в случае поперечного обтекания цилиндра описывается с помощью степенной зависимости Nu=2519-139.jpg , причём С и m имеют разл. значение для разных диапазонов изменения числа Рейнольдса:

Re

С

m

5-80

0,923

0,40

2519-140.jpg

0,792

0,46

2519-141.jpg

0, 225

0,60

2519-142.jpg

0,0262

0,80

При свободной (естественной) конвекции осн. определяющим критерием К. т. является Грасгофа число 2519-143.jpg , где 2519-144.jpg - ускорение свободного падения, 2519-145.jpg - коэф. объёмного температурного расширения среды, 2519-146.jpg - коэф. кинематич. вязкости, 2519-147.jpg - характерный перепад темп-р внутри среды. Критериальный закон принимает вид 2519-148.jpg. При 2519-149.jpg 0,5 определяющую роль в процессе К. т. играет2519-150.jpg лея число 2519-151.jpg, _ объединяющее критерии 2519-152.jpg и 2519-153.jpg :

2519-154.jpg

где 2519-155.jpg - коэф. температуропроводности среды. Напр., средний коэф. К. т. при свободной конвекции бесконечной среды около горизонтального цилиндра н случае2519-160.jpg описывается степенным законом: 2519-161.jpg, причём С и n связаны с реализуемым режимом течения около цилиндра и могут быть приняты равными значениям, приведённым в табл.

Ra

С

n

2519-156.jpg

0,45

0

2519-157.jpg

1,18

1/8

2519-158.jpg

0,54

1/4

2519-159.jpg

0, 135

1/3


В случае жидких металлов, для к-рых 2519-162.jpg , определяющую роль в процессе К. т. при свободной конвекции играет комбинированный критерий

2519-163.jpg

При капиллярной конвекции осн. определяющими критериями К. т. являются числа Марангони 2519-164.jpg и 2519-165.jpg

2519-166.jpg

где

2519-167.jpg

- перепад поверхностного натяжения вследствие изменения темп-ры и концентрации с поверхностно-активного вещества вдоль свободной поверхности.

Лит.: Кутателадзе С. С., Основы теории теплообмена, 5 изд., М., 1979; Теплотехнический справочник, 2 изд., т. 2, М., 1976; Кутателадзе С. С., Б о р и ш а н-с к и и В. М., Справочник по теплопередаче, Л--М., 1959; Теория теплообмена. Терминология, М., 1971; Основы теплопередачи в авиационной и ракетно-космической технике, М., 1975; Проблемы космического производства, М., 1980.

Н. А. Апфимов.

  Предметный указатель