Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Заряка аккумулятора за 2 минуты
Прорыв в технологии изготовления аккумуляторных батарей для портативных устройств
Трудно себе представить современные гаджеты без аккумулятора. Все портативные электронные устройства, такие как телефоны, нетбуки, смартфоны и т.п. имеют компактные аккумуляторные батареи. Но на сегодня они же являются и самым «слабым звеном» гаджета. Кроме непродолжительного срока службы и малой емкости есть и еще один недостаток - время зарядки аккумулятора. Далее...

Технология изготовления аккумуляторных батарей

координатные детекторы

КООРДИНАТНЫЕ ДЕТЕКТОРЫ (позиционно-чувствительные детекторы) - детекторы элементарных частиц, ядерных фрагментов, тяжёлых ионов, способные с высокой точностью локализовать отдельные точки их траекторий. С помощью К. д. определяют место прохождения, углы вылета, а по отклонению в магн. поле - импульсы заряж. частиц. К. д. позволяют реконструировать сложную пространств. картину взаимодействия ядерных частиц в веществе, в т. ч. множественного рождения, каскадного размножения, рассеяния и излучения.

Различают трековые (визуальные) К. д. (Вильсона камера ,диффузионная камера, разрядно-конденсационная камера, пузырьковая камера, искровая камера, стримерная камера, ядерная фотографическая эмульсия); годоскопич. К. д., содержащие плотно упакованные детекторы малого размера [ионизационные камеры, Гейгера счётчики, разрядные трубки, стримерные трубки (дрейфовые), сцинтилляционные детекторы и полупроводниковые детекторы, приборы С зарядовой связью (ПЗС-детекторы]; )многоэлектродные (многопроволочные) К. д. [газовые и жидкостные ионизац. камеры, пропорциональные камеры, дрейфовые камеры (рис. 1), стриповые полупроводниковые детекторы]. Координаты траекторий частиц определяют по их трекам (следам) в трековых координатных детекторах или по номерам каналов (проволочек), где возникает сигнал.

2524-33.jpg

Рис. 1. Пакет плоских дрейфовых камер (размером Зм2524-34.jpg0,8 м) с 2524-35.jpg=0,2 мм.


Действие К. д. основано на локальном преобразовании малых порций энергии, затраченных частицей на ионизацию и возбуждение атомов вещества, в макроскопич. сигнал, несущий информацию о месте прохождения частицы. Это достигается с помощью лавинообразного усиления в метастабильной рабочей среде трекового К. д. (пересыщенный пар и т. п.) либо за счёт ускоряющего электрич. поля и (или) благодаря внеш. электронному устройству (усилителю, фотоэлектронному умножителю и т. п.).

2524-40.jpg

Рис. 2. а - Схема шестигранной пропорциональной камеры (длина 0,8 м, 2524-41.jpg=45мкм); б - распределение результатов координатных измерений.

Из-за диффузии электронов и ионов, образованных на пути частицы, их дрейфа в электрич. поле, уширения сгустков ионизации в процессе усиления (или следа в трековом К. д.), а также вследствие дискретной структуры К. д. (рис. 2, а)измеренная координата х к--л. точки траектории частицы отличается на величину 2524-36.jpg от её истинного значения. Среднеквадратичное отклонение значений 2524-37.jpg (рис. 2, б)определяет координатное разрешение 2524-38.jpg детектора. Как правило, 2524-39.jpg мм (табл.).

2524-43.jpg

Рис. 3. Двухчастичный распад Z°-бозона (на экране дисплея ЭВМ), зарегистрированный дрейфовой камерой ускорителя-коллайдера Лаборатории им. Э. Ферми (США).

Координатное разрешение детекторов

2524-44.jpg

В ядерной фотоэмульсии, небольших пузырьковых камерах с голографич. регистрацией треков, в стримерных камерах высокого давления, стриповых детекторах и матрицах ПЗС 2524-42.jpg=0,5-25 мкм. Благодаря столь высокому разрешению их используют в качестве т. н. вершинных детекторов при исследовании частиц высоких энергий для получения детальной информации о процессах в "вершине" взаимодействия (см. Комбинированные системы детекторов). Варьируя расстояние между электродами, состав вещества, режим (темп-ру, давление, напряжённость электрич. поля, а в управляемых К. д.- амплитуду, длительность и запаздывание управляющего импульса), можно увеличить координатное разрешение. В многопроволочных К. д. этой цели иногда достигают, определяя координаты "центра тяжести" распределения амплитуд сигналов, наведённых на ближайших к месту прохождения частицы сигнальных проволочках. Аналогичный метод используют в годоскопических и многопроволочных ливневых спектрометрах (спектрометрах полного поглощения) для определения координат частицы, образующей эл--магн. или электронно-ядерный ливень. Здесь 2524-45.jpg= 2524-46.jpg (ГэВ) мм, где 2524-47.jpg-энергия частицы (улучшение 2524-48.jpg с ростом 2524-49.jpg связано с увеличением числа спектрометрич. каналов, используемых для определения координат центра тяжести ливня). Т. к. в каждой плоскости годоскопического или многопроволочного К. д., как правило, определяется только одна координата (х), то для измерения др. координаты (у)соседние параллельные плоскости К. д. поворачивают на 90° относительно друг друга. В тех случаях, когда допустима меньшая точность измерений второй координаты (напр., при измерении импульса частицы по магн. отклонению), её определяют, снимая сигналы с электродов др. полярности, методом деления токов на сигнальной проволочке, по времени распространения сигнала вдоль электрода и т. д.

2524-50.jpg

Рис. 4. Многочастичное событие, зарегистрированное многопроволочными дрейфовыми камерами на ускорителе-коллайдере (ЦЕРН).


Информация от многоканальных К. д. передаётся для обработки на ЭВМ и может быть визуализована на экране дисплея (рис. 3). Фильмовая информация с трековых К. д. обрабатывается на просмотровых автоматизированных устройствах. Развиваются и бесфильмовые методы съёма трековой информации на основе передающих телевизионных трубок или матриц ПЗС, объединённых с электронно-оптич. усилителями. При этом различие между трековыми, годоскопическими и многопроволочными К. д. стирается.

К. д. используются в экспериментах на ускорителях (рис. 4), для решения задач ядерной физики и при исследовании космич. излучения. Применение К. д. сделало возможным обнаружение нек-рых элементарных частиц и их распадов. К. д. применяют также в др. исследованиях, связанных с регистрацией частиц: в физике плазмы, в гамма- и нейтринной астрономии, при изучении радиоакт. распада, для целей неразрушающего контроля и в медицине.

Лит.: Kleinknecht К., Particle detectors, "Phys. Repts", 1982, v. 84, № 2, p. 86; Ситар Б., Новые направления в развитии дрейфовых камер, "ЭЧАЯ", 1987, т. 18, в. 5, с. 1080; Труды Международного симпозиума по координатным детекторам в физике высоких энергий, Дубна, 22-25 сентября 1987, Дубна, 1988. Г. И. Мерзон.

  Предметный указатель