Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
СГУЩЕНИЕ ТЕМНОТЫ
Некоторые физики полагают, что загадочное темное вещество Вселенной состоит из огромных частиц размером в световой год или даже больше. Оказавшись в их окружении, обычное вещество подобно мыши, снующей под ногами динозавров. Далее...

Тёмная материя

максвелла распределение

МАКСВЕЛЛА РАСПРЕДЕЛЕНИЕ - распределение по скоростям частиц (молекул) макроскопич. физ. системы, находящейся в статистич. равновесии, в отсутствие внеш. поля при условии, что движение частиц подчиняется законам классич. механики. Установлено Дж. К. Максвеллом (J. С. Maxwell) в 1859. Согласно M. р., вероятное число частиц в единице объёма, компоненты скоростей к-рых лежат в интервалах от Vx до3006-12.jpg, от3006-13.jpgдо3006-14.jpgи от3006-15.jpgдо3006-16.jpg, равно 3006-17.jpg, где3006-18.jpg

3006-19.jpg - ф-ция распределения Максвелла по скоростям, n - число частиц в единице объёма, т - масса частицы, T - абс. темп-ра. Отсюда следует, что число частиц, абс. значения скоростей к-рых лежат в интервале от и до u + du, равно

3006-20.jpg

Это распределение наз. M. р. по абс. значениям скоростей. Ф-ция F(V)достигает максимума при скорости 3006-21.jpg наз. наиб, вероятной скоростью. Для молекул H2 при T - 273К uB ~ 1500 м/с. При помощи M. р. можно вычислить ср. значение любой ф-ции от скорости молекул: ср. квадрат скорости3006-22.jpg ср. квадратичную скорость3006-23.jpg ср. арифметич. скорость 3006-24.jpg к-рая в

3006-25.jpg раза больше uB (рис.).

M. р. по относит, скоростям молекул и имеет вид

3006-26.jpg

откуда следует, что ср. относит, скорость молекул равна3006-27.jpg

M. р. не зависит от взаимодействия между молекулами и справедливо не только для газов, но и для жидкостей, если для них возможно классич. описание.


3006-28.jpg

В случае многоатомных молекул M. р. имеет место для постунат. движения молекул (для скорости их центра тяжести) и не зависит от внутримолекулярного движения и вращения даже в том случае, когда для них необходимо квантовое описание. M. р. справедливо для броуновского движения частиц, взвешенных в жидкости или газе.

Максвелл использовал для обоснования M. р. детального равновесия принцип. M. р. можно получить из канонического распределения Гиббса для классич. системы, интегрируя по всем пространственным координатам и по всем скоростям, кроме одной, т. к. в классич. случае распределение по скоростям не зависит от распределения по пространственным координатам. M. р. является частным решением кинетического уравнения Больцмана для случая статистич. равновесия в отсутствио впеш. полей. M. р. обращает в нуль интеграл столкновения этого ур-ния, выражающего баланс между прямыми и обратными столкновениями. Во внеш. потенциальном поле имеет место распределение Максвелла - Больцмана (см. Болъцма-на распределение). M. р.- предельный случай Базе - Эйнштейна распределения и Ферми - Дирака распределения в случае, когда можно пренебречь явлением квантового вырождения газа. M. р. подтверждено экспериментально О. Штерном (О. Stern) в 1920 в опытах с молекулярными пучками от источника, помещённого внутри вращающейся цилиндрич. поверхности, и позднее (1947) в опытах И. Эстермана (I. Estermann), О. Симпсона (О. Simpson) и Штерна по свободному падению молекул пучка под действием силы тяжести.

Лит.: Ландау Л. Д., Лифшиц Е.М., Статистическая физика, ч. 1, 3 изд., M., 1976, p 22; Pамзей H., Молекулярные пучки, пер. с англ., M., 1960; Сивухин Д. В., Общий курс физики, 2 изд., т. 2 - Термодинамика и молекулярная физика, M., 1979, 3006-29.jpg 72-74; Xир К., Статистическая механика, кинетическая теория и стохастические процессы, пер. с англ., M., 1976, гл. 1. Д. H. Зубарев.


  Предметный указатель