Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
ЕДВА ЗАМЕТНОЕ УВЕЛИЧЕНИЕ СИЛЫ ТЯЖЕСТИ
Во время землетрясений происходит сжатие земной коры и локальное изменение силы тяжести. Однако из-за отсутствия точных приборов ученым удавалось обнаруживать эти колебания только в результате длительных наблюдений до и после землетрясений. Далее...

Гравитация

максвелла уравнения

МАКСВЕЛЛА УРАВНЕНИЯ

Содержание:

1. Краткая история

2. Каноническая форма

3. Максвелла уравнения в интегральной форме

4. Общая характеристика Максвелла уравнений

5. Максвелла уравнения для комплексных амплитуд

6. Алгебраические Максвелла уравнения

7. Материальные уравнения

8. Граничные условия

9. Двойственная симметрия Максвелла уравнений

10. Максвелла уравнения в четырёхмерном представлении

11. Лоренц-инвариантность Максвелла уравнений

12. Лагранжиан для электромагнитного поля

13. Единственность решений Максвелла уравнений

14. Классификация приближений Максвелла уравнений

15. Максвелла уравнения в различных системах единиц

Максвелла уравнения - ур-ния, к-рым подчиняется (в пределах применимости классической ыакроскопич. электродинамики, см. Электродинамика классическая), электромагнитное поле в вакууме и сплошных средах.

1. Краткая история

Установлению M. у. предшествовал ряд открытий законов взаимодействий заряженных, намагниченных и токонесущих тел (в частности, законов Кулона, Био - Савара, Ампера). В 1831 M. Фарадей (M. Faraday) открыл закон эл--магн. индукции и примерно в то же время ввёл понятие электрич. и магн. полей как самостоят, физ. субстанций. Опираясь на фарадеевское представление о поле и введя ток смещения, равнозначный по своему магн. действию обычному электрич. току, Дж. К. Максвелл (J. С. Maxwell, 1864) сформулировал систему ур-ний, названную впоследствии ур-ниями Максвелла. M. у. функционально связывают электрич. и магн. поля с зарядами и токами и охватывают собой все известные закономерности макроэлектромагнетизма. Впервые о M. у. было доложено на заседании Лондонского Королевского общества 27 окт. 18(34. Первоначально Максвелл прибегал к вспомогат. механич. моделям "эфира", но уже в "Трактате об электричестве и магнетизме" (1873) эл--магн. поле рассматривалось как самостоят, физ. объект. Физ. основа M. у.- принцип близкодействия, утверждающий, что передача эл--магн. возмущений от точки к точке происходит с конечной скоростью (в вакууме со скоростью света с). Он противопоставлялся ньютоновскому принципу дальнодействия, сводящемуся к мгновенной передаче воздействий на любое расстояние3006-75.jpg Матем. аппаратом теории Максвелла послужил векторный анализ, представленный в инвариантной форме через кватернионы Гамильтона. Сам Максвелл считал, что его заслуга состоит лишь в матем. оформлении идей Фарадея.

2. Каноническая форма

Канонич. форма записи, принятая ныне, принадлежит Г. Герцу (H. Hertz) и О. Хевисайду (О. Heaviside) и основана на использовании не кватернионных, а векторных полей: напряжённости электрического поля E, напряжённости магнитного поля H, векторов электрической индукции D и магнитной индукции В. M. у. связывают их между собой, с плотностью электрического заряда3006-76.jpg и плотностью электрического тока J, к-рые рассматриваются как источники:

3006-77.jpg

Здесь использована Гаусса система единиц (о записи M. у. в др. системах см. в разделе 15). Входящие в (1) - (4) величины E, D, j являются истинными, или полярными, векторами (а величина r - истинным скаляром), поля H к В - псевдовекторами, или аксиальными векторами. Все эти величины предполагаются непрерывными (вместе со всеми производными) ф-циями времени t и координат 3006-78.jpg Следовательно, в ур-ниях (1) - (4) не учитывается ни дискретная структура электрич. зарядов и токов, ни квантовый характер самих полей. Учёт дискретности истинных источников может быть произведён даже в доквантовом (классич.) приближении с помощью Лоренца - Максвелла уравнений.

3. Максвелла уравнения в интегральной форме

Используя Гаусса - Остроградского формулу и С такса формулу, ур-ниям (1) - (4) можно придать форму интегральных:

3006-79.jpg

Криволинейные интегралы в (1a), (2a) берутся по произвольному замкнутому контуру (их наз. циркуляция-ми векторных полей), а стоящие в правых частях поверхностные интегралы - по поверхностям, ограниченным этими контурами (опирающимся на них), причём направление циркуляции (направление элемента контура3006-80.jpg) связано с направлением нормали к S (вектор3006-81.jpg) правовинтовым соотношением (если в качестве исходного выбрано пространство с правыми системами координат). В интегралах по замкнутым поверхностям (S) в (3а), (4а) направление вектора элемента площади 3006-82.jpg совпадает с наружной нормалью к поверхности; V - объём, ограниченный замкнутой поверхностью S.

M. у. в форме (1a) - (4a) предназначаются не только для изучения топологич. свойств эл--магн. полей, но и являются удобным аппаратом решения конкретных задач электродинамики в системах с достаточно высокой симметрией или с априорно известными распределениями полей. Кроме того, в матем. отношении эта система ур-ний содержательнее системы (1) - (4), поскольку пригодна для описания разрывных, нодиффе-ренцируемых распределений полей. Но в отношении физ. пределов применимости обе системы ур-ний равнозначны, т. к. любые скачки полей в макроэлектродинамике должны рассматриваться как пределы микромасштабно плавных переходов, с тем чтобы внутри них сохранялась возможность усреднения ур-ний Лоренца - Максвелла. С этими оговорками резкие скачки можно описывать и в рамках M. у. (1) - (4), прибегая к аппарату обобщённых функций.

Наконец, M. у. в интегральной форме облегчают физ. интерпретацию MH. эл--магн. явлений и поэтому нагляднее сопоставляются с теми экспериментально установленными законами, к-рым они обязаны своим происхождением. Так, ур-ние (1a) есть обобщение Био - Савара закона (с добавлением к току3006-83.jpg максвелловского смещения тока).


Ур-ние (2a) выражает закон индукции Фарадея; иногда его правую часть переобозначают через "магн. ток смещения"


3006-84.jpg


где3006-85.jpg- плотность "магн. тока смещения", ФВ - магн. поток. Ур-ние (За) связывают с именем Гаусса 3006-86.jpg , установившим соленоидальность поля В, обусловленную отсутствием истинных магн. зарядов. Впрочем вопрос о существовании магнитных монополей пока остаётся открытым. Но соответствующее обобщение M. у. произведено (Хевисайд, 1885) на основе принципа двойственной симметрии M. у. (см. в разделе 9), для чего в (2) и (2a) наряду с магн. током смещения вводится ещё и "истинный" магн. ток (процедура, обратная проделанной когда-то Максвеллом с электрич. током в первом ур-нии), а в ур-ние Гаусса (3), (За) - магн. заряд

3006-87.jpg


где 3006-88.jpg- плотность магн. заряда. Фактически все экспериментальные установки для регистрации ожидаемых магнитных монополей основаны на этом предположении. Наконец, ур-ние (4a) определяет поле свободного электрич. заряда; его иногда называют законом Кулона (Ch. A. Coulomb), хотя, строго говоря, оно не содержит утверждения о силе взаимодействия между зарядами, да и к тому же справедливо не только в электростатике, но и для систем с произвольным изменением поля во времени. На тех же основаниях иногда и ур-нпе (Ia) связывают с именем Ампера (A. Ampere).

4. Общая характеристика Максвелла уравнений

Совокупность M. у. (1) - (4) составляет систему из восьми (двух векторных и двух скалярных) линейных дифференц. ур-ний 1-го порядка для четырёх векторов 3006-89.jpg Источники (скаляр3006-90.jpgи вектор3006-91.jpg) не могут быть заданы произвольно; применяя операцию 3006-92.jpgк ур-нию (1) и подставляя результат в (4), получаем:


3006-93.jpg


или в интегральной форме:


3006-94.jpg


Это ур-ние непрерывности для тока, содержащее в себе закон сохранения заряда для замкнутых изолнров. областей3006-95.jpg,- один из фундам. физ. принципов, подтверждаемых в любых экспериментах.

Ур-ния (1) - (4) распадаются на два самостоят, "блока": ур-ния (1) и (4), содержащие векторы 3006-96.jpgи источники3006-97.jpg и ур-ния (2) и (3) - однородные ур-ния для 3006-98.jpg не содержащие источников. Ур-ння (2) и (3) допускают получение общего решения, в к-ром3006-99.jpgвыражаются через т. H. потенциалы электромагнитного поля3006-100.jpgПри этом ур-ние (3) "почти следует" из (2), т. к. операция (у), применённая к (2), даёт3006-101.jpg что отличается от (3) только константой, определяемой нач. условиями. Аналогично ур-ние (4) "почти следует" из (1) и ур-ния непрерывности (5).


Система M. у. (1) - (4) не является полной: по существу, она связывает 4 векторные величины двумя векторными ур-ниями. Её замыкание осуществляется путём добавления соотношений, связывающих векторы 1-го "блока"3006-102.jpgс векторами 2-го "блока"3006-103.jpg Эти соотношения зависят от свойств сред (материальных сред), в к-рых происходят эл--магн. процессы, и наз. материальными ур-ниями (см. раздел 7).


5. Максвелла уравнения для комплексных амплитуд

В силу линейности системы (1) - (4) для её решений справедлив суперпозиции принцип .Часто оказывается удобным фурье-представление общего решения (1) - (4) как ф-ции времени (см. Фурье преобразование). Записывая временной фактор в виде 3006-104.jpg, для комплексных фурье-амплитуд3006-105.jpgи т. д.) получаем систему ур-ний


3006-106.jpg


Система (1б) - (4б) в нек-ром смысле удобнее (1) - (4), ибо упрощает применение к эл--динамич. системам, обладающим временной дисперсией (см. раздел 7), т. е. зависимостью параметров от частоты3006-107.jpg


6. Алгебраические Максвелла уравнения


Если распространить (в силу линейности M. у.) фурье-разложение и на зависимость полей от пространственных координат, т. е. представить общее решение ур-ний (1) - (4) в виде суперпозиции плоских волн типа 3006-108.jpg (k - волновой вектор), то для фурье-компонентов нолей3006-109.jpgk и т. д.) получим систему алгебраич. ур-ний:


3006-110.jpg


Такое сведение M. у. к набору ур-ний для осцилляторов (осцилляторов поля) составляет важный этап перехода к квантовой электродинамике, где эл--магн. поле рассматривается как совокупность фотонов, характеризуемых энергиями3006-111.jpg и импульсами3006-112.jpg Однако и в макроэлектродинамике представления (1в) - (4в) оказываются иногда вполне адекватными физ. сущности процессов: напр., при выделении откликов высокодобротных систем (см. Объёмный резонатор) или при изучении "механизма формирования" мод со сложной пространственной структурой из набора плоских волн и т. п. Наконец, M. у. в форме (1в) - (4в) удобны для описания свойств эл--динамич. систем, обладающих не только временной, но и пространственной дисперсией, если последняя задаётся в виде зависимости параметров от волнового вектора k.


7. Материальные уравнения

В макроэлектродинамике материальные связи, характеризующие эл--магн. свойства сред, вводятся феноменологически; они находятся либо непосредственно из эксперимента, либо на основании модельных представлений. Существуют два способа описания: в одном векторы E и H считаются исходными и материальные ур-ния задаются в виде D = D(E , H) и В = В( Е,Н), в другом - за исходные берутся векторы 2-го "блока" E и В, и соответствующие материальные связи представляются иначе: D = D(E,В), H= H(E, В). Оба описания совпадают для вакуума, где материальные уравнения вырождаются в равенства D = E и B = H.

Рассмотрим простейшую модель среды, характеризуемую мгновенным, локальным поляризац. откликом на появляющиеся в ней поля E и H. Под действием поля E в такой среде возникает электрич. поляризация 3006-113.jpg(см. Поляризации вектор), а под действием поля H - магн. поляризация 3006-114.jpg. Чаще её наз. намагниченностью и обозначают М.

Материальные ур-ния для таких сред имеют вид


3006-115.jpg


При этом индуцированные в среде электрич. заряды наз. связанными или поляризац. зарядами с плотностью 3006-116.jpg , а токи, обусловленные их изменениями,- поляризац. токами с плотностью3006-117.jpg:


3006-118.jpg


Эти понятия были перенесены и на магн. поля, что можно выразить в виде системы ур-ний, аналогичной

(8):

3006-119.jpg


и только потом выяснилось, что истинными источниками намагничивания среды оказались электрич. токи 3006-120.jpg , а не магн. заряды. Поэтому терминология сложилась на основе физически некорректной системы

3006-121.jpg

тогда как следовало бы принять беззарядовые ур-ния

3006-122.jpg

что равносильно замыканию исходных M. у. (1) - (4) с помощью материальных связей


3006-123.jpg


Из (6) и (7a) следует, что 2-й вариант представления материальных соотношений, в к-ром постулируются в качестве исходных векторы E и B, физически предпочтительнее.

В модели Лоренца - Максвелла усреднение микрополя Нмикро, произведённое с учётом вклада со стороны индуциров. полей, приводит к ур-ниям (9) и соответственно <Нмикро>= В. Однако обычно параметры сред вводятся с помощью ур-ний (7), что облегчает двойственную симметризацию ф-л (подробнее см. в разделе 9). Напр., скалярные восприимчивости сред (ce, cm) определяются соотношениями


3006-124.jpg


и позволяют ввести диэлектрическую проницаемость e и магнитную проницаемость m:


3006-125.jpg


Простейшие модели сред характеризуются пост, значениями3006-126.jpgВ случае вакуума3006-127.jpg0.

Классификация разл. сред ооычно основывается на материальных ур-ниях типа (10) и их обобщениях. Если проницаемости e и m не зависят от полей, то M. у. (1) - (4) вместе с материальными ур-ниями (10) остаются линейными, поэтому о таких средах говорят как о линейных средах. При наличии зависимостей3006-128.jpgсреды наз. нелинейными: решения M. у. в нелинейных средах не удовлетворяют принципу суперпозиции. Если проницаемости зависят от координат3006-129.jpg то говорят о неоднородных средах, при зависимости от времени3006-130.jpg - о нестац попарных средах (иногда такие эл--динамич. системы наз. параметрическими). Для анизотропных сред скаляры e, m в (10) заменяются на тензоры:3006-131.jpg (по дважды встречающимся индексам производится суммирование). Важное значение имеют также эффекты запаздывания и нелокальности отклика среды на внеш. поля.

Значение индуциров. поляризации Ре, напр, в момент г, может определяться, вообще говоря, значениями полей во все предыдущие моменты времени, т. е.


3006-132.jpg


что при преобразовании Фурье по времени приводит к зависимости3006-133.jpg [соответственно3006-134.jpgi]. Такие среды наз. средами с временной (частотной) дисперсией или просто диспергирующими средами. Аналогичная связь устанавливается и для нелокальных взаимодействий, когда отклик в точке г зависит от значения полей, строго говоря, во всех окружающих точках3007-1.jpgно обычно всё-таки в пределах нек-рой конечной её окрестности: 3007-2.jpg При преобразовании Фурье по г это приводит к появлению зависимостей 3007-3.jpg такие среды наз. средами с пространственной дисперсией (см. Дисперсия пространственная).


В проводящих средах входящая в M. у. (1) - (5) плотность тока3007-4.jpg состоит из двух слагаемых: одно по-прежнему является сторонним током3007-5.jpgобусловленным заданным перемещением электрич. зарядов под действием сторонних сил (обычно неэлектрич. происхождения), а другое - током проводимости3007-6.jpgзависящим от полей, определяемых системой M. у., и связанным с ними материальными ур-ниями вида3007-7.jpg В простейшем случае эта зависимость сводится к локальному Ома закону,


3007-8.jpg


где 3007-9.jpg- электропроводность (проводимость) среды. Иногда в (11) вводят обозначение3007-10.jpg, благодаря к-рому различают системы с заданными токами и системы с заданными полями (напряжениями). Для синусоидальных во времени полей, подчинённых ур-ниям (1б) - (4б) и материальным связям (10) и (11), вводится комплексная диэлектрич. проницаемость, объединяющая (10) и (11),3007-11.jpg, мнимая часть к-рой обусловлена проводимостью и определяет диссипацию энергии эл--магн. поля в среде. По аналогии вводится комплексная магн. проницаемость3007-12.jpg, мнимая часть к-рой обусловливает потери, связанные с перемагничиванием среды. Комплексные проницаемости в общем случае зависят от частоты w и волнового вектора3007-13.jpgэти зависимости не могут быть произвольными: причинности принцип связывает их действительные и мнимые части Крамерса - Кронига соотношениями.


В общем случае вид материальных ур-ний зависит также и от системы отсчёта, в к-рой эти ур-ния рассматривают. Так, если в неподвижной системе К среда характеризуется простейшими ур-ниями (10), то в инер-циальной системе К' , движущейся относительно К с пост, скоростью и, появляется анизотропия:


3007-14.jpg


где индексы3007-15.jpgобозначают продольные и поперечные к3007-16.jpgсоставляющие векторов. В рамках алгебраич. M. у. (1в) - (4в) материальные ур-ния (12) могут быть переписаны в виде

3007-17.jpg


что можно трактовать как наличие временной и пространственной дисперсии. Исследование процессов с материальными связями типа (12) составляет предмет электродинамики движущихся сред. Заметим, что хотя характеристики е и m удобно симметризуют материальные ур-ния, их введение не является непременным условием замыкания M. у. Соответствующей перенормировкой допустимо свести описание магн. поля к одно-векторному, т. е. сделать3007-18.jpg но при этом даже для изотропной среды диэлектрич. проницаемость становится тензором, она различна для вихревых и потенциальных полей. Физически это связано с неоднозначностью модельного представления диполь-ных моментов, во всяком случае при3007-19.jpgони могут равноправно интерпретироваться и как зарядовые, и как токовые.


8. Граничные условия


Поскольку M. у. справедливы для любых (в рамках применимости макроэлектродинамики) неоднородных сред, то в областях резкого изменения их параметров иногда можно игнорировать тонкую структуру распределения полей в переходном слое и ограничиться "сшиванием" полей по разные стороны от него, заменяя тем самым переходный слой матем. поверхностью - границей, лишённой толщины. Если внутри переходной области имелись заряды с объёмной плотностью3007-20.jpgили токи с объёмной плотностью3007-21.jpgто при сжатии слоя в поверхность сохраняются их интегральные значения ·- вводятся поверхностные заряды rпов и поверхностные токи

3007-22.jpg- толщина переходного слоя.

Применение M. у. и ур-ния непрерывности приводит к следующим граничным условиям:


3007-23.jpg


Здесь индексы 1 и 2 характеризуют поля по разные стороны от границы, а3007-24.jpg- единичный вектор нормали к поверхности, направленный из среды 1 в среду 2. Правила (1г) - (5г) пригодны для перехода через любые поверхности, независимо от того, совпадают ли они с границами раздела сред или проходят по однородным областям, поэтому их иногда наз. поверхностными M. у.


Иногда граничные условия (1г) - (5г) порождают краевые условия, т. е. задают не правила перехода через границу, а сами поля на ней. Напр., внутри идеального проводника 3007-25.jpg в силу (11) 3007-26.jpg (иначе возник бы ток неограниченной плотности), поэтому на границе раздела диэлектрик - идеальный проводник в согласии с (2г)3007-27.jpgТакие границы наз. идеальными электрич. стенками. Аналогично вводится понятие идеальной магн. стенки, на к-рой 3007-28.jpg Если структура полей по одну сторону от границы универсальна, т. е. не зависит от распределения полей по др. сторону, то краевые условия могут состоять в задании не самих полей, а лишь связей между ними, напр. 3007-29.jpg где Z - нек-рая скалярная или тензорная ф-ция координат границы (3007-30.jpg- тангенциальный компонент3007-31.jpg). К условиям такого рода относится, в частности, Леонтовича граничное условие для синусоидально меняющихся во времени полей на поверхности хороших проводников.


9. Двойственная симметрия Максвелла уравнений


Двойственная симметрия M. у. имеет место для любой формы их записи. Она состоит в инвариантности M. у. относительно линейных преобразований нолей, производимых по след, правилам:


3007-32.jpg

Здесь3007-33.jpg- произвольный угл. параметр; в частности, при3007-34.jpg= О получаются тождественные преобразования, а при 3007-35.jpg- стандартные преобразования перестановочной двойственности (операция 3007-36.jpg): замена3007-37.jpg даёт в областях, свободных от источников, новое решение M. у. При этом, однако, оно меняет местами ур-ния3007-38.jpg

3007-39.jpg и, следовательно, там, где раньше были распределены электрич. источники, возникают источники магнитные3007-40.jpg

3007-41.jpg . Поэтому с точки зрения двойственной симметрии M. у. задание материальных связей в виде 3007-42.jpg3007-43.jpg представляется вполне удобным. Дуально-симметричные M. у. обладают рядом достоинств, по крайней мере в чисто методич. плане. Так, напр., они симметризуют скачки тангенциальных компонентов магн. и электрич. полей и, если задание ffTall на поверхности идеальной электрич. стенки эквивалентно заданию поверхностного электрич. тока, то задание Я„ на идеальной магн. стенке сводится к заданию магн. поверхностного тока:

Таким сведением задач с заданными3007-44.jpgполями к задачам с заданными токами широко пользуются в теории дифракции волн, в частности в дифракции радиоволн.

Принцип перестановочной двойственности является представителем класса дискретных преобразований (см. Симметрия ),оставляющих инвариантными M. у. Такого же сорта преобразованиями являются, в частности, операция обращения времени3007-45.jpg

любые

3007-46.jpg

последовательно осуществляемые комбинации операций 3007-47.jpg

10. Максвелла уравнения в четырёхмерном представлении

Придавая времени t смысл четвёртой координаты и представляя её чисто мнимой величиной3007-48.jpg (см. Минковского пространство-время ),можно заключить описание электромагнетизма в компактную форму. Эл--магн. поле в 4-описании может быть задано двумя антисимметричными тензорами3007-49.jpg

3007-50.jpg

где3007-51.jpg- Леви-Чивиты символ ,лат. индексы пробегают значения 1, 2, 3, 4, а греческие - 1, 2, 3. В 4-век-торе тока объединены обычная плотность тока je и плотность электрич. заряда3007-52.jpg

3007-53.jpg

аналогично вводят 4-вектор магн. тока.

В этих обозначениях M. у. допускают компактное 4-мерное представление:

3007-54.jpg

Взаимной заменой векторов поля и индукции в ф-лах (13),3007-55.jpg(14) вводятся тензоры индукции эл--магн. поля

3007-56.jpg

через к-рые также могут быть записаны M. у.:

3007-57.jpg

Любая пара тензорных ур-ний, содержащая в правых частях оба 4-тока (электрич. и мат.), тождественна системе M. у. Чаще используют пару ур-ний (15 а), (18), при этом материальные ур-ния сводятся к функциональной связи между тензорами 3007-58.jpg(последний чаще обозначают через3007-59.jpg.


Из антисимметрии тензоров поля, индукции и M. у. в форме (17) - (18) следует равенство нулю 4-дивергенций 4-токов:


3007-60.jpg


к-рое представляет собой 4-мерную запись ур-ний непрерывности для электрич. (магн.) зарядов. T. о., 4-векторы токов являются чисто вихревыми, и соотношения (17), (18) можно рассматривать как их представление в виде 4-роторов соответствующих тензоров. Наряду с представленным здесь вариантом часто используется также 4-мерное описание, в к-ром временная координата (обычно с индексом О) берётся действительной, но 4-мерному пространству приписывается гипербодич. сигнатура 3007-61.jpgв таком пространстве приходится различать ко- и контравариантные компоненты векторов и тензоров (см. Ковариантность и контравариантность).


11. Лоренц-инвариантность Максвелла уравнений

Все экспериментально регистрируемые эл--динамич. явления удовлетворяют относительности принципу .Вид M. у. сохраняется при линейных преобразованиях, оставляющих неизменным интервал3007-62.jpg 3007-63.jpg и составляющих 10-мерную Пуанкаре группу: 4 трансляции3007-64.jpg, 3 пространственных (орто-) поворота3007-65.jpg и 3 пространственно-временных (орто-хроно-) поворота, иногда называемых ло-ренцевыми вращениями. Последние соответствуют перемещениям системы отсчёта вдоль осей xa с пост, скоростями3007-66.jpgВ частности, для3007-67.jpg получается простейшая разновидность Лоренца преобразований:3007-68.jpg

3007-69.jpg , где 3007-70.jpg Соответственно поля преобразуются по правилам:


3007-71.jpg


Релятивистски-ковариантная запись M. у. позволяет легко находить инвариантные комбинации полей, токов и потенциалов (4-скаляров или инвариантов Лоренца группы), сохраняющихся, в частности, при переходе от одной инерциальной системы отсчёта к другой. Во-первых, это чисто полевые инварианты (см. Инварианты электромагнитного поля ).Во-вторых, это токовые (источниковые) инварианты:


3007-72.jpg

В-третьих, это потенциальные инварианты:


3007-73.jpg


где3007-74.jpg- магн. потенциалы (получающиеся из Ае и 3007-75.jpg преобразованием перестановочной двойственности), источниками к-рых являются магн. токи jm и заряды3007-76.jpg. И, наконец, многочисл. коыбиниров. инварианты типа3007-77.jpgи им подобные. Число таких комбиниров. инвариантов (квадратичных, кубичных и т. д.) по полям н источникам неограниченно.


12. Лагранжиан для электромагнитного поля


M. у. могут быть получены из наименьшего действия принципа, т. е. их можно совместить с Эйлера - Лаг-ранжа уравнениями, обеспечивающими вариационную акстремальность ф-ции действия:


3007-78.jpg


здесь 3007-79.jpg- лагранжиан ,являющийся релятивистски-инвариантной величиной; интегрирование ведётся по 4-мерному объёму V, (t2 - t1) с фиксиров. границами. В качестве обобщённых координат принято обычно использовать потенциалы Аa и f. Поскольку лагран-жев формализм должен давать полное (замкнутое) динамич. описание системы, то при его построении нужно принимать во внимание материальные ур-ния. Они фигурируют как зависимости связанных зарядов и токов от полей В и Е·


3007-80.jpg


В результате лагранжиан принимает вид инвариантной комбинации полей, потенциалов и источников:


3007-81.jpg


А ур-ния Эйлера - Лагранжа для нек-рой обобщённой координаты 3007-82.jpg получают приравниванием нулю соответствующих вариационных производных:


3007-83.jpg


Для 3007-84.jpg приходим к (4), для- 3007-85.jpg к ур-нию (1) в соответствующих обозначениях. Вариационный подход позволяет придать теории универсальную форму описания, распространяемую и на описания динамики любых взаимодействий, даёт возможность получать ур-ния для комбиниров. динамич. систем, напр, электромеханических. В частности, для систем с сосредоточенными параметрами, характеризуемых конечным числом степеней свободы, соответствующие ур-ния наз. ур-ниями Лагранжа - Максвелла.


13. Единственность решений Максвелла уравнений


Различают теоремы единственности для стационарных и нестационарных процессов. Условия единственности нестационарных решений извлекаются из Пойн-тинга теоремы, где источники считаются заданными ф-циями координат и времени. Если бы они порождали два разл. поля, то разность этих полей в вакууме (или в любой линейной материальной среде) вследствие принципа суперпозиции была бы решением однородных M. у. Для обращения этой разности в нуль и, следовательно, получения единств, решения достаточно удовлетворить след, трём условиям. 1) На поверхности S, окружающей область V, где ищется поле, должны быть заданы тангенциальные составляющие поля Етан или поля Нтан либо соотношения между ними импедансного типа: 3007-86.jpg (п - нормаль к S) со значениями Z, исключающими приток энергии извне. К таковым относятся, в частности, условия излучения (см. Зоммерфельда условия излучения ),к-рым удовлетворяют волны в однородной среде на больших расстояниях от источников. Во всех случаях поток энергии для разностного поля вообще исчезает или направлен наружу (из объёма). 2) В нач. момент времени должны быть заданы все поля всюду внутри V. 3) Плотность энергии электромагнитного поля 3007-87.jpg HB) должна быть положительна (вакуум, среды с 3007-88.jpg. Эта частная теорема единственности обобщается на среды с нелокальными связями, а также на нек-рые виды параметрич. сред. Однако в нелинейных средах, где принцип суперпозиции не работает, никаких общих утверждений о единственности не существует.


В стационарных режимах нач. условия выпадают, и теоремы единственности формулируются непосредственно для установившихся решений. Так, в электростатике достаточно задать все источники reст, все полные заряды на изолиров. проводниках или их потенциалы, чтобы при соответствующих условиях на бесконечности (нужное спадание поля) решение было бы единственным. Аналогичные теоремы устанавливаются для магнитостатики и электродинамики пост, токов в проводящих средах.

Особо выделяется случай синусоидальных во времени процессов, для к-рых формулируют след, признаки, достаточные для получения единств, решения: 1) задание источников 3007-89.jpg задание Eтан или Нтан на ограничивающей объём V поверхности S или соответствующих импедансных условий, обеспечивающих отсутствие потока вектора Пойнтинга внутрь V; 3) наличие малого поглощения внутри V или малой утечки энергии через S для исключения существования собств. колебаний на частоте 3007-90.jpg

14. Классификация приближений Максвелла уравнений

Классификация приближений M. у. обычно основывается на безразмерных параметрах, определяющих и критерии подобия для эл--магн. полей. В вакууме таким параметром является отношение 3007-91.jpg, где 3007-92.jpg- характерный масштаб изменения полей (либо размер области, в к-рой ищется решение), 3007-93.jpg- характерный временной масштаб изменения полей.

а) а = 0 - статич. приближение, статика.

Система M. у. распадается на три.

I.

3007-94.jpg


Материальная связь в простейшем случае имеет вид 3007-95.jpg . Это система M. у. для электростатики, в к-рой источниками служат заданные распределения плотности электрич. заряда 3007-96.jpg и сторонней поляризации 3007-97.jpg. В однородной среде3007-98.jpg эл--статич. потенциал f определяется Пуассона уравнением


3007-99.jpg

Для более сложных материальных <ур-ний различают электростатику анизотропных сред 3007-100.jpg, нелинейную электростатику 3007-101.jpg, электростатику сред с пространственной дисперсией 3007-102.jpg, важным частным случаем к-рых являются движущиеся среды с временной дисперсией (здесь может даже меняться тип ур-ния для потенциала с эллиптического на параболический) и т. п.

II. Поля в магнитостатике описываются ур-ниями

3007-103.jpg

где в случае простейшей материальной связи индуци-ров. намагниченность определяется соотношением

3007-104.jpg

Источниками в ур-ниях магнитостатики являются заданные распределения плотности электрич. тока3007-105.jpg и сторонней намагниченности3007-106.jpg В однородной среде

3007-107.jpg векторный потенциал магн. поля3007-108.jpg(калибровка кулоновская) определяется векторным ур-нием Пуассона

3007-109.jpg

В общем случае возможны такие же разновидности сред, что и в электростатике.

III. K статич. электродинамике относят и процессы протекания пост, токов в распределённых проводящих средах. Токовая статика охватывается ур-ниями

3007-110.jpg

Источниками являются силы неэлектрич. происхождения, действующие на заряды, характеризующиеся напряжённостью 3007-111.jpg Электрич. заряды присутствуют лишь в местах неоднородности среды, напр, на границах проводящих сред. Распределение токов в проводящих средах сопоставимо с распределением электрич. и магн. полей в электростатике и магнитостатике. Часто благодаря этой аналогии говорят, напр., о магн. цепях, по к-рым "текут" магн. потоки3007-112.jpg аналогичные электрич. токам 3007-113.jpgв электрич. цепях.

б) 3007-114.jpg- квазистатика, обобщающая соответствующие статич. приближения.

В квазиэлектростатике вакуумные электрич. поля описываются ур-ниями статики (I.), а в ур-ниях для магн. поля в качество заданного источника фигурирует и ток смещения. Квазимагнитостатика описывается статич. ур-ниями для магн. полей с учётом закона индукции (2) для электрич. поля. Поскольку вихревое электрич. поле меняет электрич. токи в проводниках, являющиеся источниками магн. поля, то этот раздел квазистатики более богат, чем предыдущий; он описывает широкий круг явлений, происходящих в цепях перем, тока с сосредоточенными параметрами: ёмкостями, индуктивностями и сопротивлениями.

Квазистатика в распределённых проводящих средах описывается ур-ниями квазистационарного (квазистатического) приближения, в к-рых током смещения пренебрегают по сравнению с токами проводимости. В этом приближении распределения электрич. токов, электрич. и магн. полей описываются одинаковыми ур-ниями диффузионного типа:

3007-115.jpg

Эти ур-ния определяют, напр., распределение токов Фуко, проникновение перем. эл--магп. поля в проводник (скин-эффект)и т. п.

в) 3007-116.jpg Резонансные волновые поля описываются точной системой M. у., однако их иногда выделяют из общего класса полей, особенно в тех случаях, когда их структура (пространственное распределение) фиксируется границами области, внутри к-рой эти поля могут быть возбуждены (напр., внутри полых резонаторов с металлическими стенками или в поперечном сечении волноводов либо в окрестности тонкой проволочной или щелевой антенны). При этом обычно обращаются к фурье-преобразованию M. у. и представлению поля в виде набора дискретных или квазидискретных мод.

г)3007-117.jpg. В рамках этого неравенства существуют ква-зиоптич. и оптич. приближения (см. Квазиоптика, Геометрической оптики метод), относящиеся к протяжённым в масштабе длины волны распространениям полей (волновым пучкам, многомодовым конфигурациям и т. п.). Под характерным масштабом, входящим в параметр а, здесь подразумевается масштаб изменения амплитуды поля.

15. Максвелла уравнения в различных системах единиц


Выше использовалась симметричная гауссова абс. система единиц. Удобство гауссовой системы единиц состоит в том, то все 4 вектора поля 3007-118.jpgобладают в ней одинаковыми размерностями3007-119.jpg и потому в классическом "линейном" вакууме можно избежать введения ненужных констант: в силу 3007-120.jpg 3007-121.jpg безразмерные проницаемости вакуума обращаются в единицы3007-122.jpgДр. достоинством одинаковой размерности эл--магн. полей является их ес-теств. объединение в единые тензоры поля вида (13), (14) без внесения корректирующих множителей.

Если принять запись ур-ния непрерывности в форме (5), а также соблюдение принципа дуальной симметрии, то M. у. можно придать вид


3007-123.jpg


где константы 3007-124.jpg связаны соотношением


3007-125.jpg


Для простейших материальных связей типа (10) можно ввести проницаемости вакуума3007-126.jpgи относит, проницаемости среды3007-127.jpg Тогда из волнового ур-ния в вакууме следует естеств. соотношение между константами


3007-128.jpg


где с - скорость распространения любого эл--магн. возмущения (в частности, света) в вакууме. В гауссовой системе3007-129.jpg


Существует операция рационализации, предложенная Хевисайдом и состоящая в устранении иррациональных числовых множителей из M. у. Простейший путь 3007-130.jpg принят в рационализов. системе Xe-висайда - Лоренца.


В Международной системе единиц (СИ) возникает дополнительная размерная константа, наз. импедансом (или характеристическим сопротивлением) вакуума 3007-131.jpg Ом. Это представляет известные удобства при сопоставлении процессов распространения плоских волн в свободном пространстве с волнами напряжения и тока в линиях передач, но приходится приписывать вакууму размерные значения проницаемостей:

3007-132.jpg

Значения коэф. в СИ: 3007-133.jpg

Лит.: Ландау Л. Д., Лифшиц E. M., Теория поля, 7 изд., M., 1988; их же, Электродинамика сплошных сред, 2 изд., M., 1982; Власов А. А., Макроскопическая электродинамика, M., 1955; Никольский В. В., Теория электромагнитного поля, 3 изд., M., 1964; Джексон Д ж., Классическая электродинамика, пер. с англ., M., 1965; Каценеленбаум Б. 3., Высокочастотная электродинамика, M., 1966; Стражев В. И., Томильчик Л. M., Электродинамика с магнитным зарядом, Минск, 1975; Медведев Б. В., Начала теоретической физики, M., 1977; Новожилов Ю. В., Яппа Ю. А., Электродинамика, M., 1978; Туров E. А., Материальные уравнения электродинамики, M., 1983; Fущич В. И., Hикитин А. Г., Симметрия уравнений Максвелла, К., 1983; Бредов M. M., Румянцев В. В., Tоптыгин И. H., Классическая электродинамика, M., 1985.

M. А. Миллер, E, В. Суворов.

  Предметный указатель