Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Технология производства экранов AMOLED
Развитие новой концептуальной технологии в производстве устройств отображения графической информации
Технология производства устройств отображения на жидких кристаллах или TFT уже очень долго и успешно применяется и находится на пике своей популярности. Но уже сейчас появилась, успешно разрабатывается и даже применяется AMOLED технология производства устройств отображения информации. И, возможно, что уже в самом скором будущем она вытеснит все свои жидкокристаллические аналоги. Далее...

AMOLED экран

механострикция

МЕХАНОСТРИКЦИЯ - дополнит, деформация, возникающая в упорядоченных магнетиках (ферро-, фер-ри- и антиферромагнетиках) при наложении на них механич. напряжений. Наложение напряжений приводит к перераспределению магн. моментов доменов, что ведёт к изменению намагниченности, а это в свою очередь через посредство магнитострикции даёт дополнит, деформацию. Вклады в M. (как и в вызванную магн. полем магнитострикцию l) в общем случае определяются процессами, связанными и со смещением границ доменов, и с вращением результирующих векторов самопроизвольной намагниченности M8 доменов (см. Намагничивание ).Чаще всего речь идёт о продольных деформациях: растяжение (напряжение 3026-2.jpg - сжатие 3026-3.jpg. В случае3026-4.jpgпрямая АО на рис. 1 характеризует относительное упругое удлинение 3026-6.jpg образца в зависимости от3026-7.jpgтогда кривая OBC - зависимость от s полного удлинения3026-8.jpg

3026-9.jpg и есть M. В магнитомягких материалах кривая OB идёт круче, в менее мягких - более полого 3026-10.jpg т. к. смещение доменных стенок в последних затруднено и отступление от Гука закона в них проявляется не так заметно. Наложение на образец с3026-11.jpg магн. поля вызовет его магнитострикцию OD, и при последующем росте s явление опишется кривой DBC, a M. окажется соответственно меньше.



3026-5.jpg



M. может только увеличивать общую деформацию. Это связано с тем, что при упругом растяжении в случае 3026-12.jpg векторы 3026-13.jpg доменов образца поворачиваются вдоль направления растяжения; в случае 3026-14.jpg векторы 3026-15.jpg стремятся расположиться в плоскости, перпендикулярной направлению растяжения,- при этом M., "поперечная" к векторам3026-16.jpg, будет также положительна. Из теории следует, что явление M. связано со знаком магнитоупругой энергии - произведения l s s, где l s - магнитострикция насыщения. У соединений, содержащих редкоземельные элементы и обладающих большой (~10-3) величиной ls, знак величины l ss определяет зависимость M. от напряжения и магн. поля.

В ряде инварных сплавов и редкоземельных сплавов и соединений, особенно вблизи темп-р магнитных фазовых переходов, упругие деформации вызывают заметное изменение не только направления, но и величины3026-17.jpg что через посредство объёмной магнитострикции3026-18.jpg парапроцесса может приводить к добавочной M.- за счёт "механопарапроцесса".

С M. непосредственно связан 3026-19.jpg-эффект - зависимость модуля упругости E изотропных (поликристал-лич. или аморфных) ферро-, ферри- и антиферромагнетиков от величины магн. поля. В отсутствие внеш. магн. поля, когда векторы M s доменов "свободны", механич. напряжение, наложенное на образец, вызывает обычно упругое удлинение3026-20.jpgи удлинение3026-21.jpgмагнито-стрикционной природы, т. е.3026-22.jpg где Е0 - модуль упругости упорядоченного магнетика в размагниченном состоянии. Наложение сильного магн. поля, закрепляя все векторы M s и вызывая магнитострикцию насыщения3026-23.jpgсводит к нулю3026-24.jpgт. е. модуль E s магнетика, намагниченного до "технического" насышения, равен 3026-25.jpg- модулю при отсутствии M. Макс. 3026-26.jpg-эффект 3026-27.jpg Расчёты показывают, что 3026-28.jpg где 3026-29.jpg - нач. восприимчивость данного процесса намагничивания, 3026-30.jpg (численная константа). T. о., макс.3026-31.jpg-эффект велик в материалах с большой магнитострикцией, малой магнито-кристаллич. анизотропией, малыми внутр. напряжениями. Напр., у отожжённого3026-32.jpg

У соединений с большой3026-33.jpg обнаружен 3026-34.jpg-эффект, достигающий 160%.

Вычисление зависимости3026-35.jpg-эффекта от магн. поля Я представляет собой более сложную задачу, оно возможно, если известна ф-ция распределения векторов Ms всех доменов образца. У ряда магнетиков в сравнительно слабых полях можно наблюдать уменьшение модуля ЕН от значения E0 и только затем его рост до Е т . Это т.н. отрицательный 3026-36.jpg-эффект, к-рый связывают с преодолением задержки смещения границ доменов и др. подобными процессами.

У ферромагнетиков в пек-рой области темп-р T выше темп-ры Кюри3026-37.jpg модуль E обычно меняется с темп-рой линейно. Экстраполяция его значений на область 3026-38.jpgдаёт значения "парамагнитного" модуля Ep. Для MH. магнетиков 3026-39.jpgНо во мн. случаях, напр, у Ni, на графике E(T)в районе3026-40.jpgзаметен небольшой "положительный" избыток: при 3026-41.jpgвеличина 3026-42.jpg несколько больше3026-43.jpg В общем случае на таком графике при 3026-44.jpgмогут наблюдаться как положительный, так и отрицательный изломы и, кроме того, более или менее размытый скачок модуля dE того или иного знака, также связанный с добавочной M. На рис. 2 такая зависимость показана для инварного сплава3026-45.jpg3026-46.jpg имеющего3026-47.jpgВ районе3026-48.jpgвиден небольшой скачок значения E 3026-49.jpg. На рис. EH соответствует отрицат. 3026-50.jpg-эффекту в слабом поле 3026-51.jpgкА/м,3026-52.jpg- модуль в большем поле 3026-53.jpg Es соответствует "техническому" насыщению в поле 3026-54.jpg- значение, рассчитанное по магнитострикц. и магн. данным с учётом добавочной M., соответствующее очень большому полю. Значит. разница между 3026-56.jpgобъясняется явлением спонтанной магнитострикцни: возникающим при3026-57.jpg и зависящим от темп-ры изменением параметров кристаллич. решётки магнетика, связанным с действием обменных сил. Подобное явление наблюдается также в ферри- и антиферромагнетиках.


3026-55.jpg



Во многом аналогичная 3026-58.jpg-эффекту зависимость модуля сдвига G изотропных магнетиков носит назв. 3026-59.jpg -эффекта. При исследовании упругих свойств монокристаллов магнитоупорядоченных веществ в зависимости от магн. поля рассматривается поведение или модуля E вдоль данного направления в кристалле, или, чаще, упругих констант кристалла (см. Гука закон).

Лит.: Вонсовский С. В., Шур Я. С., Ферромагнетизм, M.- Л., 1948; Белов К. П., Упругие, тепловые и электрические явления в ферромагнетиках, 2 изд., M., 1957; Катаев Г. И., О ферромагнитной аномалии модуля Юнга и модуля сдвига сплавов инварного класса, "Физ. мет. и металловед.", 1961, т. 11, е. 375; Новиков В. Ф., Долгих E. В., Механострикция высокомагнитострикционных соединений редкоземельных металлов с железом, "ФТТ", 1984, т. 26, с. 214; Катаев Г. И. и др., Влияние магнитного поля на модуль упругости гексагонального ферромагнетика с анизотропией типа "легкая плоскость"(на примере монокристалла Tb0,4 Gd0,6), "ЖЭТФ", 1985, т. 89, с. 1416. Г. И. Катаев.


  Предметный указатель