Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
ВОЗРОЖДЕНИЕ СТРУН
Подобно высокой моде, космология имеет свои собственные причуды, пристрастия и заблуждения. Минули благословенные дни обзоров галактик и открытия квазаров; сегодня все помешаны на загадке первых звезд Вселенной и природы темной энергии.Но,например, возвращается интерес к космическим струнам, потерянный в конце 1990-х гг. Далее...

Радиотелескоп

ондулятор

ОНДУЛЯТОР (франц. onclulateur, от onde - волна), устройство, в к-ром создаются эл--магн. поля, действующие на движущиеся в нём заряж. частицы с периодич. силой, удовлетворяющей условию: среднее за период значение силы равно нулю. Движущаяся заряж. частица, попав в О., совершает периодич. колебат. движение и испускает ондуляторное излучение. Заряж. частицу в О. можно считать возбуждённым осциллятором ,движущимся равномерно и прямолинейно. Наиб. распространённые траектории заряж. частицы - синусоиды и спирали.

15012-36.jpg

Схема ондулятора со знакопеременным магнитным полем. Траектория частиц (электрона е)лежит в плоскости, перпендикулярной рисунку.15012-37.jpg - длина периода траектории частицы.

По виду создаваемых полей О. делятся на два типа. В О. 1-го типа поля периодически изменяются в пространстве или во времени [знакопеременное магн. поле (рис.), винтовое магн. поле, ВЧ-электрич. поле, поле эл--магн. волны и т. д.]. В О. 2-го типа действуют ста-тич. фокусирующие магн. и электрич. поля (однородное магн. поле, скрещенные однородные электрич. и магн. поля, квадрупольное электрич. поле и т. д.). Длина периода траектории частицы в О. 1-го типа задаётся периодом поля О. и в релятивистском случае не зависит от её энергии. В О. 2-го типа длина периода траектории частицы определяется фокусирующими свойствами полей (градиентом, величиной), амплитудой колебания частицы (задаётся углом и координатой её вхождения в О.), энергией частицы. О. делят также на статические (постоянные во времени электрич. и магн. поля) и динамические (быстро изменяющиеся во времени эл--магн. поля).
Природные О. - кристаллы. Усреднённое впутрикристаллич. электрич. поле является фокусирующим для заряж. частицы (см. Каналирование наряженных частиц)и в то же время - периодич. ф-цией расстояния, отсчитываемого вдоль прямой, пересекающей кристаллография, плоскости. Поэтому, если угол и координата вхождения частицы в кристалл таковы, что она пересекает кристаллографич. плоскости, то кристалл подобен О. 1-го типа. Длина периода траектории частицы в этом случае определяется межплоскостным расстоянием и углом между вектором ср. скорости частицы и кристаллографич. плоскостями. Если же нач. условия таковы, что частицы попадают в режим плоскостного или осевого каналирования, то кристалл подобен О. 2-го типа.
О. нашли широкое применение: они могут служить источниками ондуляторного излучения, использоваться в лазерах на свободных электронах, в быстродействующих системах индикации протонных пучков высоких энергий, в системах управления параметрами пучков заряж. частиц, использующих фокусирующие свойства О. и радиац. трение частиц, возникающее при испускании ими ондуляторного излучения. О. могут использоваться в масс-сепараторах хим. элементов и их изотопов, в ондуляторных линейных ускорителях заряж. частиц, в ондуляторных группирователях пучков заряж. частиц. Комбинации О. 1-го и 2-го типов (напр., О. с винтовым и с соленоидальным магн. полями) могут использоваться в масс-спектрометрах, системах ввода ионов в магн. ловушки, в системах, создающих регулируемый угл. разброс пучков частиц. Во мн. установках может оказаться целесообразным применение О. с плавно меняющимися параметрами - длиной периода траектории частицы, величинами магн. и электрич. полей и т. д. В таком О. можно, напр., добиться увеличения времени резонансного взаимодействия частиц с эл--магн. волной, расширения диапазона частот спектра спонтанного ондуляторного излучения.
В О. с переменным магн. полем могут использоваться как пост. магниты с чередующимися знаками полюсов (рис.), так и электромагниты. В О. на основе электромагнитов, представляющих собой две спирали, сдвинутые друг относительно друга на половину шага намотки и питаемые противоположно направленными токами, создаются винтовые (циркулярно поляризованные) магн. поля; такие О. наз. спиральными. Комбинируя спиральные О. с одинаковым и разным направлением намотки обмоток, с одинаковым и разным шагом намотки и регулируя токи в обмотках, можно оперативно изменять величину магн. поля О. и вид его поляризации (изменять циркулярную поляризацию магн. поля на линейную или эллиптическую, а также создавать совокупность циркулярно поляризованных полей с разл. направлениями вращения и разными периодами). Такими методами можно генерировать ондуляторное излучение с разл. свойствами иа основной и на высших гармониках.
В О., используемых в источниках ондуляторного излучения (генерация опдуляторного излучения на высших гармониках), в ондуляторных линейных электронных, протонных, ионных ускорителях, в масс-сепараторах и т. д., часто необходимо создавать магн. поля большой напряжённости. В этих случаях перспективно использование в них обычных и высокотемпературных сверхпроводников, что позволит получать значения нанряжённостей магн. полей ~10515012-38.jpg106 Э.

Лит.: Алексеев В. П., Бессонов Е. Г., О способах генерирования циркулярно поляризованного электромагнитного излучения на ускорителях и накопителях заряженных частиц, в сб.: Труды 6-го Всесоюзного совещания по использованию сиихротронного излучения, СИ-84, Новосиб., 1984; см. также лит. при ст. Ондуляторное излучение.

Е. Г. Бессонов.

  Предметный указатель