Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
БЕЗМОЛВНЫЕ ДИАЛОГИ
Если вдруг шум, травма или разряженная атмосфера помешают будущим астронавтам переговариваться друг с другом во время космического полета, на помощь придет разработанный в NASA метод «чтения мыслей на расстоянии». Далее...

чтения мыслей

парамагнетизм

ПАРАМАГНЕТИЗМ - свойство веществ (парамагнетиков)намагничиваться в направлении внеш. магн. поля. Приставка "пара" (греч. "возле", "рядом") указывает на слабость эффекта по сравнению с ферромагнетизмом .Кроме того, в отличие от ферро-, ферри-и антиферромагнетизма, П. не связан с магнитной атомной структурой, и в отсутствие внеш. магн. поля намагниченность парамагнетика равна нулю.
П. обусловлен в основном ориентацией под действием внеш. магн. поля Н ссбств. магн. моментов15035-60.jpg частиц парамагн. вещества (атомов, ионов, молекул). Природа этих моментов может быть связана с орбитальным движением электронов, их спином, а также (в меньшей степени) со спином атомных ядер. При15035-61.jpg где Т - абс. темп-pa, намагниченность парамагнетика М пропорциональна внеш. полю:15035-62.jpg где15035-63.jpg - магнитная восприимчивость. В отличие от диамагнетизма, для к-рого15035-64.jpg < 0, при П. восприимчивость положительна; её типичная величина при комнатной темп-ре (Т15035-65.jpg293 К) составляет 10-7 - 10-4.
П. свободных атомов и ионов определяется в основном полным моментом импульса электронной оболочки, характеризующимся квантовым числом J. В магн. поле Н осн. уровень энергии атома расщепляется на 2J + 1 магн. подуровней, разделённых одинаковыми интервалами15035-66.jpg где15035-67.jpg - магнетон Бора и gj - Ланде множитель (см. Зеемана. эффект). Каждому подуровню соответствует квантованное значение проекции15035-68.jpg магн. момента атома на направление Н:15035-69.jpg где mj= J, J - 1, ..., - J. При термодинамич. равновесии, согласно Больцмана распределению, преим. заселяются ниж. подуровни с макс. значениями15035-70.jpg В направлении Н образуется результирующий магн. момент, равный

15035-71.jpg

где N - число магн. атомов,15035-72.jpg ф-ция

15035-73.jpg

является ф-цией Бриллюэна (см. Ланжевсна функция). При а15035-74.jpg 1 (слабые поля, высокие темп-ры) ф-ла (1) принимает вид

15035-75.jpg

где15035-76.jpg - эффективный магн. момент атома. Отсюда вытекает Кюри закон для парамагн. восприимчивости:

15035-77.jpg

где15035-78.jpg - постоянная Кюри.
При а15035-79.jpg1 (сильные ноля, низкие темп-ры) из (1), (2) следует: М =15035-80.jpgт. е. достигается магн. насыщение (все микроскопич. моменты ориентированы в направлении Н). В классич. пределе (J15035-81.jpg)ф-ция BJ(a) переходит в ф-цию Ланжевена L(a') = ctha' - 1/а', где а' =15035-82.jpgH/kT, a15035-83.jpg - классич. магн. момент частицы. Именно в этих терминах П. Ланжевеном (P. Langevin, 1906) была построена первая теория П. Типичная зависимость М от H/Т для парамагн. соли, л к-рой П. обусловлен ионами Gd3+ (J = 7/2, gj = 2), показана на рис. 1.

15035-84.jpg

Рис. 1. Зависимость намагниченности М от H/Т для сульфата гадолиния.

Ф-лы (1) - (4) справедливы для осн. состояния атома с заданным J. Влияние вышележащих уровней приводит к двум поправкам. Во-первых, если возбуждённые уровни достаточно заселены, т. е. соответствующие энергетич. интервалы15035-85.jpgkT, то состояния с другими J дают непосредств. вклад в15035-86.jpg Во-вторых, примесь вышележащего квантового состояния приводит к появлению наведённого полем магн. момента атома15035-87.jpg вносящего в восприимчивость не зависящую от темп-ры добавку15035-88.jpg Она растёт с уменьшением15035-89.jpg и в нек-рых случаях (напр., для Sm3+ и особенно для Eu3+, у к-рого ниж. уровень не магнитный J = 0) даёт осн. вклад в П. (см. Ванфлековский парамагнетизм).
П. твёрдых диэлектриков. В твёрдых непроводящих парамагнетиках обычно носителями магн. моментов являются частицы с недостроенными электронными оболочками, прежде всего ионы переходных металлов групп Fe, Pd и Pt, лантаниды и актиниды. Действующее на них электрич. внутрикристаллпческое поле частично или полностью снимает вырождение осн. энергетнч. уровня магн. иона (см. Штарка эффект ),что делает простые ф-лы (1) - (4) недостаточными. При этом, согласно Крамерса теореме, для атомов (ионов) с полуцелым спином (нечётным числом электронов) всегда остаётся по крайней мере двукратное вырождение, снимаемое только в магн. поле.
У ионов лантанидов и актннндов недостроенные 4f- и 5f-оболочки в значит. мере экранированы внеш. электронами, влияние на них внутрикристаллич. поля минимально, J остаётся хорошим квантовым числом, а расщепление уровней ~102 см-1. При высоких темп-pax15035-90.jpg это расщепление не оказывает существенного влияния на П., и ф-лы (1) - (4) хорошо согласуются с опытом. Это видно из табл. 1, где приведены теоретически рассчитанные и определённые экспериментально (из закона Кюри) значения15035-91.jpg для ряда редкоземельных ионов в жидких растворах парамагн. солей.
При более низких темп-pax происходит перераспределение заселённостей штарковских уровней, приводящее к нарушению закона Кюри.

Табл. 1. - Множители Ланде и эффективные магнитные моменты ионов лантаноидов
Ион
Сe3+
Prз+
Nd3+
Sm3+
Eus3+
Gd3+
J
5/2
4
9/2
5/2
0
7/2
gj
6/7
4/5
8/11
2/7
0
2
15035-92.jpg
2,54
3,58
3,62
0,85
0
7,94
15035-93.jpg

(эксперим.)

2,39
3,6
3,62
1,54
3,6
7,9
Ион
Tb3+
Dy3 +
He3+
Er3+
Тm3+
Yb3+
J
6
15/2
8
15/2
6
7/2
gj
3/2
4/3
5/4
6/5
7/6
8/7
15035-94.jpg
9,72
10,6
10,6
9,58
7,56
4,54
15035-95.jpg

(эксперим.)

9,6
10,5
10,5
9,5
7,2
4,4

Для ионов группы Fe, магн. свойства к-рых связаны с недостроенной 3d-оболочкой, влияние внутрикристаллич. поля более существенно: оно разрывает спин-орбитальную связь, и магн. ион характеризуется орбитальным (L) и спиновым (S)квантовыми числами. Расщепление орбитального мультиплета внутрикристаллич. полем достигает обычно 104 см-1, причём ср. значение проекции орбитального момента в осн. состоянии часто равно нулю - происходит "замораживание" орбитального момента внутрикристаллич. полем. В последнем случае в ф-лах (1) - (4) достаточно заменить J на S. a gJна gs = 2. Сравнение вычисленных таким образом значений с экспериментом дано в табл. 2.

Табл. 2. - Спины и эффективные магнитные моменты ионов группы железа
Ион
Ti3+
V3+
Сr3+
Мn3+
Fe3+, Мn2+
2+
Со2+
Ni2+
Сu2+
S
1/2
1
3/2
2
5/2
2
3/2
1
1/2
15035-96.jpg
1,73
2,83
3,87
4,90
5,92
4,90
3,87
2,83
1,73
15035-97.jpg

(эксперим.)

1,8
2,8
3,8
4,9
5,9
5,4
4,8
3,2
1,9

Наблюдаемые для нек-рых ионов расхождения относятся к более сложному случаю, когда осн. состояние вырождено и вкладом орбитального магнетизма пренебречь нельзя. Ещё сильнее влияние поля лигандов (см. Внутрикристаллическое поле)в веществах, содержащих ионы групп Pd и Pt, а также в парамагн. комплексах, где П. определяется заполнением молекулярных орбит.
При низких темп-pax, когда заселён только ниж. орбитальный (штарковский) уровень, магн. свойства ионов переходных элементов в парамагнетиках описывают спиновым гамильтонианом - эфф. оператором энергии, содержащим явно лишь спиновые переменные. Влияние частично "замороженного" орбитального момента учитывается набором параметров. Оно проявляется в небольшом (~1 см-1) расщеплении спинового мультиплета, ведущем к отклонению от закона Кюри, и в анизотропии g-тензора, заменяющего множитель Ланде. Наиб. анизотропия наблюдается для нек-рых лантанидов: так, гл. значения g-тензора для иона Тb3+ могут составлять15035-98.jpg = 18,15035-99.jpg < 0,01. В таких случаях вектор намагниченности парамагнетика может значительно отклоняться от направления Н.
П. металлов и полупроводников. Дополнит. вклад в П. металлов обусловлен электронами проводимости, обладающие спином s = 1/2 и магн. моментом mв. Квантование проекции15035-100.jpg приводит, с учётом Ферми - Дирака распределения15035-101.jpg к появлению намагниченности15035-102.jpg

где15035-103.jpg - ферма-уровень. Соответствующая восприимчивость15035-104.jpg практически не зависит от темп-ры (см. Паули парамагнетизм ).Для свободного электронного газа15035-105.jpg где т - масса электрона и N = концентрация свободных электронов. В реальных металлах из-за взаимодействия электронов проводимости с решёткой и между собой ф-лы усложняются. В частности, вместо т вводится эфф. масса m*, а15035-106.jpg заменяется на эффективный магн. момент. Экспериментальные значения15035-107.jpg для щелочных металлов, не содержащих ионов с недостроенными оболочками, сопоставлены с теорией в табл. 3.

Табл. 3. - Парамагнитная восприимчивость Паули для щелочных металлов
15035-108.jpg • 106
теория
24,4
20,0
эксперимент
27,2
22, 7

На практике парамагнетизм Паули проявляется на фоне Ландау диамагнетизма ,также обусловленного электронами проводимости. В сильных магн. полях и при низких темп-pax эти два эффекта нельзя рассматривать независимо, и квантование в магн. поле ведёт к характерной осциллирующей зависимости М от H (см. Де Хааза - ван Алъфена эффект).
П. электронов проводимости и дырок в полупроводниках определяется их концентрацией и эфф. магн. моментом, зависящим от зонной структуры полупроводника. В простейшем случае15035-109.jpg где15035-110.jpg - ширина запрещённой зоны и А - параметр вещества. Обычно эта зависимость усложняется за счёт влияния примесей и пр.
Ядерный П. Магнитные моменты атомных ядер15035-111.jpg в 103 - 104 раз меньше15035-112.jpg поэтому ядерная парамагнитная восприимчивость15035-113.jpg составляет всего 10-6 - 10-8 электронной. Наблюдать ядерный П. в чистом виде удаётся лишь при очень низких температурах в веществах, где нет неспаренных электронов и величина15035-114.jpg максимальна (например, в твёрдом водороде и жидком 3Не). В последнем случае квантовые свойства ферми-жидкости обусловливают независимость15035-115.jpg от температуры (ядерный аналог парамагнетизма Паули).
В парамагнетиках Ван Флека (LiTmF4, PrCu6 и др.) ядерный П. усиливается в 102 - 103 раз за счёт сверхтонкого взаимодействия ядра парамагн. иона с его электронной оболочкой, обладающей наведённым магн. моментом. Искусств. усиление ядерного П. достигается методами динамич. поляризации ядер (см. Ориентированные ядра, Оверхаузера эффект).
Коллективные эффекты. Взаимодействия между парамагн. микрочастицами наиб. существенны в твёрдых телах. Они приводят к замене Кюри закона на Кюри - Вейса закон15035-116.jpg= С/(Т -15035-117.jpg), где параметр15035-118.jpgпо порядку величины соответствует энергии взаимодействия. Знак15035-119.jpg положителен, если при охлаждении парамагнетика до Кюри точки возникает ферромагнетизм (Fe, Co, Ni и др.), и отрицателен, если при охлаждении до Нееля точки вещество становится антиферромагнитным (напр., Dy, MnO, FeS04). В концентриров. парамагнетиках, где магн. частицы образуют осн. решётку вещества, гл. роль играют обменные взаимодействия, стремящиеся ориентировать соседние магн. моменты параллельно либо антипараллельно друг другу. В разбавленных парамагнетиках - твёрдых растворах магн. ионов в диамагн. матрицах - преобладают магн. диполь-дипольные взаимодействия, знак к-рых зависит от относит, расположения магн. частиц. В этом случае, а также при конкуренции ферро- и антиферромагн. обмена, охлаждение парамагнетика может породить состояние спинового стекла.
Близко расположенные примесные магн. центры, связанные сильным обменным взаимодействием, иногда образуют суперпара магн. кластеры, обладающие увеличенным магн. моментом (обменно-усиленный П.). Макроскопич. аналог таких систем - суспензии мелких ферромагн. частиц в жидких или твёрдых растворителях (см. Суперпарамагнетизм, Магнитные жидкости). К резкому усилению П. ведут и обменные взаимодействия электронов проводимости в нек-рых металлах (напр., в Pd и его сплавах).
Релаксационные и динамические явления. Намагничивание парамагнетика в поле Н происходит в результате процессов продольной и поперечной магн. релаксации. Первая устанавливает равновесное значение проекции М на направление Н, вторая ведёт к затуханию нестационарной ортогональной компоненты намагниченности. Продольная релаксация обусловлена взаимодействием микроскопич. магн. моментов с тепловым движением среды. Время продольной релаксации15035-120.jpg обычно составляет 10-10 - 10-4 с при 300 К и растёт с понижением темп-ры. Время поперечной релаксации15035-121.jpg в парамагн. металлах и жидкостях мало отличается от15035-122.jpg однако в твёрдых диэлектриках, как правило,15035-123.jpg В последнем случае поперечная релаксация обусловлена взаимодействиями в системе микроскопич, магн. моментов и ведёт к установлению в ней внутр. квазиравновесия, характеризуемого, в общем, двумя спиновыми температурами. Одна из них служит мерой упорядоченности моментов15035-124.jpg во внеш. поле Н, а другая - мерой их взаимной упорядоченности (ближнего порядка).
Процессы магн. релаксации существенно влияют на динамич. восприимчивость парамагнетика15035-125.jpg15035-126.jpg - комплексную величину, характе ризующую линейный отклик намагниченности на малое гармонич. изменение внеш. поля с частотой15035-127.jpg Типичные частотные зависимости компонент продольной восприимчивости15035-128.jpg измеряемой в направлении Н, показаны на рис. 2. Дополнит. особенности на этих кривых могут возникать от вклада т. н. адиабатич. восприимчивости, к-рая связана с взаимодействиями между магн. моментами. Кривые15035-129.jpg используются для измерения времён магн. релаксации (метод Гортера).

15035-130.jpg

Рис. 2. Типичная частотная зависимость продольной динамической восприимчивости15035-131.jpg парамагнетика.

Поперечная по отношению к Н дипамич. восприимчивость15035-132.jpg обнаруживает резонансные пики на высоких частотах, соответствующих расщеплению уровней энергии в магн. поле (см. Магнитный резонанс ).Воздействие на твёрдый парамагнетик поперечным ВЧ-полем вблизи резонанса может усиливать ближний порядок в парамагнитной системе, что в свою очередь ведёт к росту15035-133.jpg (эффект усиленной восприимчивости).
Изучение П. статич. и динамич. методами даёт ценную информацию о магн. моментах частиц, их энерге-тич. спектрах и взаимодействиях, о тонких деталях внутр. структуры веществ. П. используется в методах магнитного охлаждения до сверхнизких темп-р, в квантовой электронике (см. Мазер)и др. См. также Электронный парамагнитный резонанс, Ядерный магнитный резонанс.

Лит.: Вонсовский С. В., Магнетизм, М., 1971; Кринчик Г. С., Физика магнитных явлений, 2 изд., М., 1985; Альтшулер С.А., Козырев Б. М., Электронный парамагнитный резонанс соединений элементов промежуточных групп, 2 изд., М., 1972; Абрагам А., Гольдман М., Ядерный магнетизм: порядок и беспорядок, пер. с англ., т. 1 - 2, М., 1984.

В. А. Ацаркин.

  Предметный указатель