Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
ЕДВА ЗАМЕТНОЕ УВЕЛИЧЕНИЕ СИЛЫ ТЯЖЕСТИ
Во время землетрясений происходит сжатие земной коры и локальное изменение силы тяжести. Однако из-за отсутствия точных приборов ученым удавалось обнаруживать эти колебания только в результате длительных наблюдений до и после землетрясений. Далее...

Гравитация

переключения эффекты

ПЕРЕКЛЮЧЕНИЯ ЭФФЕКТЫ - скачкообразный обратимый переход полупроводника (или полупроводниковой структуры) из высокоомного состояния в низкоомное под действием электрич. поля, превышающего пороговое значение ЕП = 104 - 106 В/см. П. э. наблюдаются в полупроводниках, у к-рых вольт-амперная характеристика (ВАХ) имеет участок с отрицательным дифференциальным сопротивлением. Такой характер ВАХ обусловлен формированием электрич. доменов (для ВАХ N-типа; см. Ганна эффект, Ганна диод)или токовых шнуров (для ВАХ S-типа; см. Шнурование тока).
Термин "переключение" возник в связи с обнаружением быстрого (10-11 с) и большого (4-го порядка) изменения проводимости халькогенидных стеклообразных полупроводников (ХСП) сложного состава (рис.). П. э. в ХСП впервые наблюдались в 1961 - 62 А. Д. Пирсоном (A. D. Pearson), Б. Т. Коломийцем, С. Р. Овшинским (патент США, 1963). В патентной литературе П. э. в ХСП наз. эффектом Овшинского (см. Аморфные и стеклообразные полипроводники).

15041-16.jpg

Вольт-амперная характеристика халькогенидных стеклообразных полупроводников: I - сила тока; V - напряжение.

В плёнках ХСП с двумя металлич. электродами П. э. наблюдаются при постоянном, переменном и импульсном напряжении. Пороговые ток Iп и напряжение Vп не зависят от полярности напряжения, а также от темп-ры Т в диапазоне 2 - 250 К; при повышении Т они претерпевают скачок: /п возрастает, напряжение падает и затем слабо изменяются с Т, вплоть до размягчения материала. Аналогично зависят Iп и Vn от длительности импульса напряжения V, и скачок параметров наблюдается при длительности импульсов, близкой ко времени диэлектрич. релаксации материала. В зависимости от амплитуды импульсов переключение может возникать как на переднем фронте импульса (длительность 50 пс), так и с задержкой. В последнем случае в образце формируется канал, в к-ром пороговые условия реализуются раньше, чем в остальной части образца. Трансформация канала в токовый шнур происходит скачком, когда канал теряет флуктуац. устойчивость (см. Флуктуации электрические), а плотность тока вне канала достигает критич. величины. Если плотность тока вне канала не достигает критич. величины, преобразование канала в шнур происходит плавно (П. э. "вырождаются") .
Дифференц. сопротивление образца с токовым шнуром близко к 0. Плотность тока в шнуре "насыщается" при величине порядка ~104 А/см2. Сечение шнура практически линейно зависит от тока. Время восстановления пороговых параметров после снятия напряжения определяется восстановлением однородности образца и является линейной ф-цией расстояния между электродами. Для образцов длиной ~0,5 мкм и сечением 10-10 см2 это время сравнимо со временем переключения. Энергия, затрачиваемая на переключение таких образцов, может достигать 10 - 15 Дж при Т = 300 К. Уменьшение Vп в течение первых переключений обусловлено несовершенством стеклообразных плёнок и контактов.
В кристаллич. полупроводниках с S-образной ВАХ (при одинаковых с ХСП параметрах) П. э. отсутствуют. Поэтому механизмы П. э. в ХСП связывают с влиянием разупорядочення. Однозначно механизм П. э. в ХСП не установлен.
Практически неограниченное число переключений (>1014) и стойкость ко всем видам внеш. воздействий, а также возможность управления фазовыми трансформациями в токовом шнуре (кристаллизация) обеспечивают использование П. э. в стабилизаторах напряжения, для защиты интегральных схем от перенапряжения, в переключателях СВЧ-сигналов, в датчиках давления и темп-ры, генераторах сигналов спец. формы, операц. усилителях и т. п.

Лит.: Костылев С. А., Шкут В. А., Электронное переключение в аморфных полупроводниках, К., 1978; Ad1ег D., Неnisсh Н. К., Моtt N., The mechanism of threshold switching in amorphous alloys, "Rev. Mod. Phys.", 1978, v. 50, p. 209; Madan A., Shaw M. P., The physics and applications of amorphous semiconductors, Boston - [a.o.]. 1988.

В. Б. Сандомирский.

  Предметный указатель