Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
ЗАГАДКА ГОЛУБЫХ ЗВЕЗД
В огромном шаровом звездном скоплении Омега Центавра находятся самые необычные звезды во Вселенной – голубые, переполненные гелием.
В прошлом году с помощью телескопа Хаббл ученые обнаружили, что в шаровом скоплении Омега Центавра наблюдаются красные и голубые звезды, сжигающие в своих недрах водород. Далее...

Голубая звезда

пьезоэлектрические материалы

ПЬЕЗОЭЛЕКТРИЧЕСКИЕ МАТЕРИАЛЫ - вещества (диэлектрики, полупроводники), обладающие хорошо выраженными пьезоэлектрич. свойствами (см. Пьезоэлектрики).

Пьезоэлектрич. кристаллы распространены в природе в виде естеств. минералов (кварц, турмалин, цинковая обманка и др.), большинство практически важных П. м. синтезируют (сегнетова соль, ниобат лития, пьезокерамика, пьезополимеры).

П. м. используются для изготовления пьезоэлектрических преобразователей разл. назначения: в гидролокации, УЗ-технике (см. Ультразвук), акустоэлектро-нике, точной механике и др. Для изготовления пьезо-элемента выбирают П. м., сопоставляя их параметры и характеристики, к-рые определяют эффективность и стабильность работы пьезоэлектрич. преобразователя с учётом его назначения и условий эксплуатации. П. м. характеризуются след. величинами (табл.): матрицами пьезомодулей d и относительной диэлект-рич. проницаемости es, коэф. упругой податливости SE, скоростью распространения звуковых волн с, тангенсом угла диэлектрич. потерь tgd, механич. добротностью Qm, плотностью r, предельно допустимой темп-рой q (темп-pa Кюри для сегнетоэлектриков). Во мн. случаях оценивать П. м. удобнее след. параметрами: 1) коэф. эл--механич. связи Kik (для квазистатич. режима, когда длина звуковой волны существенно превосходит размеры пьезоэлемента):

4019-122.jpg

где e0=8,85·10-12 Ф/м - диэлектрич. постоянная вакуума; 2) величиной4019-123.jpgважной для излучателей звука; 3) величиной4019-124.jpg, к-рая входит в выражение эл--механич. кпд преобразователей; 4) отношением 4019-125.jpg характеризующим чувствительность приёмника звука в режиме холостого хода; 5) величиной4019-126.jpg определяющей мин. сигнал, к-рый может быть принят приёмником на фоне электрич. шумов схемы; 6) механич. добротностью Qm, определяющей акустомеханич. кпд излучателя при заданной нагрузке, полосу частот пропускания эл--механич. фильтров, качество линий задержки.

Большое значение для мощных излучателей звука имеют предельно допустимое механич. напряжение, к-рое зависит от механич. прочности материала, стабильность свойств относительно разогрева, а также нелинейность свойств, при к-рой происходит перекачка энергии в высшие гармоники и уменьшение эффективности (кпд) на осн. частоте (рис. 1 и 2).

4019-127.jpg

Примечание. Значения всех констант даны для темп-ры 16-20° С. Цифры в скобках у монокристаллов определяют индексы соответствующих тензорных характеристик, напр. (И) означает с11, e11, d11, (36/2)-1/2d36 и т. д. Для пьезокерамики верх. значения (над чертой) для с и S имеют индексы (11), а для d и К-индекс (31); ниж. значения (под чертой) констант имеют индекс (33). Величины d31<0; d33>0. Значения tgd для кристаллов даны при напряжённости поля E<0,05 кВ/см; для пьезокерамики tgd даётся в интервале 0,05<Е<2 кВ/см; dv-объёмный пьезомодуль.

Кристаллы кварца, несмотря на их сравнительно слабые пьезоэлектрич. свойства, применяются в тех случаях, когда требуются высокая механич. добротность и стабильность по отношению к изменению темп-ры (напр., в эл--механич. фильтрах и различных стабилизирующих устройствах). Кристаллы ADP, сульфата лития и сегнетовой соли, как П. м. для излучателей и приёмников звука, вытеснены пьезокерами-кой ввиду её высокой пьезоэлектрич. эффективности, стабильности и технологичности. Сегнетополупроводник сульфоиодид сурьмы и выполненный на его основе материал ХГС-2 перспективны для гидроакустич. приёмников звука.


Рис. 1. Зависимость тангенса диэлектрических потерь 4019-128.jpg от эффективного значения возбуждающего электрического поля для различных типов пьезокерамики.

4019-129.jpg

Рис. 2. Зависимость механической добротности4019-130.jpg(относительной) от амплитуды механического напряжения для различных типов пьезокерамики.

4019-131.jpg

Свойства пьезокерамики, особенно у составов типа ЦТС, с изменением темп-ры варьируют незначительно. Изменение резонансной частоты в интервале темп-р 30-40°С достигает 1,5-2,0% (у сегнетовой соли до 40%), пьезомодуля и диэлектрич. проницаемости - 10-20%. Зависимость параметров пьезокерамики от всестороннего сжатия слаба, однако при действии одностороннего сжатия (108 Н/м2) вдоль оси спонтанной поляризации изменение (уменьшение) пьезомодулей может достигать 30-70%, а увеличение диэлектрич. проницаемости от 5 до 60%.

Кристаллы ниобата лития, танталата лития, германа-та свинца применяются в УЗ-технике в области СВЧ-диапазона (вплоть до ГГц) и в акустоэлектронике благодаря чрезвычайно малому затуханию в них акустич. волн, как объёмных и сдвиговых, так и поверхностных. Они используются в акустооптике. Для пьезополу-проводниковых преобразователей в линиях задержки и др. устройствах акустоэлектроники используются сульфид кадмия, оксид цинка, арсенид галлия и др. пьезополупроводники.

К пьезополимерам относят как поливинилиденфторид (ПВДФ) и сополимеры на его основе, так и пьезоэлек-трич. композиционные материалы (пьезокомпозиты). Материалы на основе ПВДФ выпускаются в виде плёнок толщиной от 10 мкм до 1 мм и более, металлизован-ных и поляризованных по толщине. Пьезокомпозит может иметь структуру в виде пористого каркаса пьезокерамики, пропитанного полимером, или чаще в виде частиц пьезокерамики (порошка, тонких стерженьков), распределённых в полимере. П. м. на основе полимеров обладают высокой пьезоэлектрич. эффективностью, эластичностью и рядом технол. преимуществ.

Пьезоэффект в полимерах возникает в результате неоднородного распределения зарядов, при статич. электризации, полимеризации и др. (тип I), а также вследствие ориентации диполей в полярных полимерах при механич. деформировании (тип II), в биополимерах (тип III), при поляризации в электрич. поле (тип IV, электреты), в результате спонтанной поляризации в таких высокополярных поликристаллич. полимерах (тип V), как, напр., ПВДФ, полиамиды, сегнетоэлектрич. стёкла и др.

В полимерах типа I и II пьезоэлектрич. коэф. d обычно невелики [d33 = (0,1-0,5)·10-12 Кл·Н-1]; в материалах типа III и IV они достигают более высоких значений [до d33 = (1- 2)·10-12 Кл·Н-1]; в материалах типа V -[до d33 = 40·10-12 Кл·Н-1].

Среди пьезокомпозитов наиб. распространены материалы на основе порошка титаната свинца, распределённого в полимере, из-за значит. величины объёмного пьезомодуля (dV = 30·10-12 Кл/Н) при достаточно простой технологии изготовления.

Лит.: Матаушек И., Ультразвуковая техника, пер. с нем., М., 1962; Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 1, ч. А, М., 1966; Смажевская Е. Г., Фельдман Н. Б., Пьезоэлектрическая керамика, пер. с англ., М., 1971; Ультразвуковые преобразователи, пер. с англ., М., 1972; Яффе Б., Кук У., Яффе Г., Пьезоэлектрическая керамика, пер. с англ., М., 1974; Newnham R. Е. и др., Connectivity and piezoelectric - pyroelectric composites, "Mat. Res. Bull.", 1978, т. 13, № 5, p. 525; Powers J. M., An emerging hydrophone technology, "JEEE Trans. Eas con's", 1979, v. 27 CH; Tiny R. Y., Evaluation of new piezoelectrik composites for hydrophone, "Ferroelectrics", 1986, v. 67; Monroe D.-L., Blum J. В., Safari A., Sol-gel derived PbTiO3 - polymer piezoelectric composites, "Ferroelectrics. Lett. section", 1986, v. 5, p. 39. P. Е. Пасынков.

  Предметный указатель