Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Доступная практика научной коммуникации
Современные методы и средства научной коммуникации
Бесплатный открытый доступ к результатам научных исследований с правом законного их использования представляет актуальную и важную задачу научной коммуникации. При этом особый интерес представляет реализация практики открытого бесплатного доступа научных организаций и отдельных исследователей к онлайновым публикациям научных результатов. Далее...

Средства коммуникации

радиофизика

РАДИОФИЗИКА - раздел физики, охватывающий изучение и применение эл--магн. колебаний и волн радиодиапазона, а также распространение развитых при этом методов в др. науки. На шкале эл--магн. волн радиодиапазон занимает интервал частот от 104 до 1011Гц (см. Радиоволны), и первоначально радиофиз. исследования придерживались этих границ. Со временем, однако, проявилась тенденция к "экспансии", и ныне Р. вобрала в себя физику эл--магн. колебаний практически любого диапазона частот.

Совр. Р. имеет сложную и разветвлённую структуру, обеспечивающую: 1) техн. освоение всего охватываемого ею спектра эл--магн. колебаний; 2) исследование физ. свойств линейных и нелинейных систем (сред) и создание их адекватных моделей; 3) обогащение новыми физ. идеями радиотехники, технологии и др. инженерных областей; 4) развитие методов метрологии в части измерения важнейших физ. параметров, констант и создание надёжных эталонных стандартов; 5) исследование свойств окружающего пространства; 6) изучение эл--магн. проявлений биол. объектов.

Р. сформировалась в 30-40-е гг. 20 в. с развитием радиотехники, радиосвязи, радио- и телевещания, радионавигации и радиолокации, что потребовало освоения новых диапазонов частот, разработки и воплощения физ. принципов генерации, излучения, распространения и приёма радиоволн, модуляции и кодирования радиосигналов и т. д. В СССР развитие Р. связано с именами Л. И. Мандельштама и Н. Д. Папалекси и с созданной ими науч. школой.

Первоначально развитие Р. определялось тремя ком-понентами: теорией колебаний и волн, физ. электроникой и электродинамикой. Причём Р. не только ис-пользовала достижения в этих областях науки, но и способствовала их развитию.

Теория колебаний и волн содержит матем. аппарат для исследования процессов в колебат. системах (линейных и нелинейных, с сосредоточенными и распределёнными параметрами, постоянными или периодически изменяющимися во времени, см. Колебания ).Особую роль играют исследования нелинейных колебаний (в частности, автоколебаний), лежащих в основе работы большинства генераторов электромагнитных колебаний радиодиапазона. Впоследствии в этот раздел вошли теоретич. и эксперим. задачи, в к-рых колебат. движения являются частными (хотя и по-прежнему выделенными) случаями общих процессов. Сформировалось особое направление исследования динамич. поведения нелинейных систем, отвлечённое от их конкретной реализации с привлечением методов качественной теории дифференц. ур-ний, физического (аналогового) и численного моделирования. В Р. активно используется это новое направление, к-рое чаще наз. нелинейной динамикой (см. Динамическая система, Нелинейные уравнения математической физики).

В физ. электронике Р. стимулировала оптимизацию характеристик уже существовавших приборов и создание принципиально новых эл--вакуумных, газоразрядных и твердотельных устройств. Быстродействие, простота управления, высокие значения кпд, перекрытие всех диапазонов частот и мощностей, высокая чувствительность, избирательность, перестраивае-мость, низкий уровень шумов и др. требования, предъявляемые к разл. устройствам, могут быть удовлетворены только с привлечением разнообразных физ. явлений. Поэтому радиофиз. исследованиям сопутствовали, а иногда предшествовали исследования электронной и ионной эмиссии, полупроводниковой плазмы и разработка методов управления движением заряж. частиц (см. Электронная и ионная оптика, Ускорители заряженных частиц), изучение взаимодействия эл--магн. полей с электронными потоками, с газоразрядной плазмой и с плазмой твёрдых тел и др. В результате развития представлений об автофазировке и группировке электронов, о самосогласованном синхронном взаимодействии частиц с эл--магн. полем появились такие приборы, как клистрон, магнетрон, лампа бегущей волны, лампа обратной волны и др., а затем мазер на циклотронном резонансе, гиротрон, лазер на свободных электронах и т. п., к-рые являются и предметом изучения Р., и базой для радиофиз. исследований (см. Релятивистская электроника).

Электродинамика, в осн. опирающаяся на ур-ния Максвелла в линейных средах, обеспечила понимание процессов излучения, распространения и приёма радиоволн. Это позволило создать разл. элементы радиоаппаратуры как в ДВ-диапазонах (системы с сосредоточ. параметрами - колебат. контуры, фильтры, преобразователи и т. п.), так и в КВ-диапазонах (системы с распределёнными параметрами - линии передачи, волноводы, объёмные резонаторы, аттенюаторы и т. п.). Осн. направления исследования: излучение и распространение радиоволн в разл. средах (напр., в кос-мич. плазме), с учётом анизотропии, поглощения, рефракции и дифракции, рассеяния, отражения и нелинейных эффектов, связанных со взаимодействием излучения с веществом, создание мн. типов антенн.

По мере развития Р. её методы проникали в др. области физики. В результате в Р. стали различать "физику для радио" и "радио для физики". Новые задачи, новые цели, а также освоение новых диапазонов частот привлекли в Р. идеи и методы из др. областей физики, в частности из оптики (приёмы управления волновыми пучками, принципы действия таких элементов, как линзы, зеркала, интерферометры, поляроиды и т. п.), что привело к появлению нового раздела Р.- квазиоптики (теория оптич. пучков с учётом поперечной диффузии

комплексных амплитуд, квазиоптич. линии передачи, открытые резонаторы и т. п.). С др. стороны, радиофиз. методы, развитые, напр., для сантиметрового диапазона длин волн, проникнув в оптику, заметно расширили её возможности, вызвав к жизни такие разделы, как волоконная оптика, интегральная оптика, голография. Поэтому иногда используют такие гибридные понятия, как "радиооптика", "оптоэлектроника". Затем мн. приёмы были перенесены и в др. разделы науки, прежде всего в акустику (напр., "акустоэлектроника").

В результате взаимодействия с др. областями физики и обособления отд. разделов внутри Р. образовался ряд самостоят. направлений. Статистич. Р. охватывает такие вопросы, как флуктуац. процессы в колебат. и автоколебат. системах, управление формой и стабильностью спектральных линий генераторов, шумы приёмников и преобразователей, неравновесное излучение сред, распространение волн в средах со случайными неоднородностями, разработка и применение методов корреляц. анализа сигналов, предельные возможности получения голографич. изображений и др. проблемы. Радиоспектроскопия - совокупность методов, разработанных для измерения и расшифровки спектров излучения и поглощения атомов, молекул и кластеров, попадающих в интервал частот радиодиапазона, развития новых принципов диагностики и анализа сред. Радиоастрономия - разработка физ. методов приёма, обработки и интерпретации слабых сигналов, приходящих от космич. источников, создание антенн и интерферометров с узкой диаграммной направленностью, исследование природы радиоизлучения разл. источников. Изучение взаимодействия излучения с веществом на квантовом уровне, к-рое привело к созданию квантовых генераторов и усилителей для сверхкоротковолновых участков радиодиапазона, вызвало появление квантовой электроники. Иногда выделяют более общее направление - квантовую Р., к-рая обеспечивает новый теоретич. подход, опирающийся на сочетание классич. электродинамики (для описания излучения) и квантовой механики (для описания вещества). Сюда примыкает микроэлектроника ,существенно изменившая идейное и технол. вооружение радиотехники (полупроводниковые приборы, интегральные схемы, криогенная электроника, высокотемпературная сверхпроводящая электроника, жидкие кристаллы и т. п.).

Т. о., круг рассматриваемых Р. вопросов и сфера её влияния непрерывно расширяются. Однако Р. остаётся традиционно самостоят. областью знаний и методов исследования, так или иначе связанных с использованием эл--магн. излучения.

А. В. Гапонов-Грехов, М. А. Миллер.

  Предметный указатель