Заряка аккумулятора за 2 минутыТрудно себе представить современные гаджеты без аккумулятора. Все портативные электронные устройства, такие как телефоны, нетбуки, смартфоны и т.п. имеют компактные аккумуляторные батареи. Но на сегодня они же являются и самым «слабым звеном» гаджета. Кроме непродолжительного срока службы и малой емкости есть и еще один недостаток - время зарядки аккумулятора. Далее... |
сатурн
САТУРН - шестая по удалению от Солнца и вторая по размерам и массе планета Солнечной системы. Ср. гелиоцентрич. расстояние (большая полуось орбиты) составляет 9,539 а. е. (1,427 млрд. км). Вследствие заметного эксцентриситета орбиты (0,056) гелиоцентрич. расстояние изменяется прибл. от 9 до 10,1 а. е. Наклон плоскости орбиты к эклиптике 2°29,4', ср. скорость движения по орбите 9,64 км/с, а период обращения вокруг Солнца (сидерич. период, или сатурнианский год) 29,458 земных года. Мин. расстояние между С. и Землёй составляет 1,2 млрд. км, максимальное- 1,6 млрд. км; соответственно видимые угл. размеры диска изменяются от 20" до 15". Синодич. период обращения равен 378,09 сут. Видимая звёздная величина С. в ср. противостоянии 0,67, абс. планетная величина 8,88. Интегральное сферич. альбедо 0,34 г.
Ср. экваториальный радиус С. (по уровню в атмосфере с давлением 1 бар) , масса (Мс) 5,68*1026 кг. Из-за быстрого вращения вокруг оси (период на экваторе 10,2 ч) С. обладает большим сжатием (0,1), вследствие чего его полярный радиус почти на 6500 км меньше экваториального. Существенно при этом, что период вращения меняется с широтой (скорость вращения экваториальной зоны прибл. на 5% выше полярной). Ср. плотность С.- самая низкая из всех планет, всего 0,69 г/см3, что прибл. вдвое меньше плотности Солнца. Ускорение силы тяжести на экваторе 10,45 м/с2, параболич. скорость (скорость убегания) ок. 36 км/с.
Твёрдой поверхности С. не имеет и является газожидким телом, находящимся в состоянии гидростатич. равновесия. Структура его недр в целом подобна структуре Юпитера. Согласно моделям внутр. строения планет (см. Планеты и спутники), основанным на представлениях об адиабатич. изменении темп-ры по глубине и многослойной дифференциации вещества недр, внеш. газовая оболочка С. является водородно-гелиевой (при отношении Не/Н, меньшем солнечного, т. е. 0,13 0,04 по массе), за ней следует оболочка, состоящая в осн. из жидкого водорода, а с расстояния0,5 Rс- оболочка из металлического водорода. Металлич. водород заполняет слой до уровня 0,3 Rс, где начинается ядро. Давление здесь достигает 10 Мбар. Ядро составляет25% по массе, что в неск. раз больше ядра Юпитера. Причина состоит в том, что наряду с веществом скальных пород в его состав, вероятно, входит значит. примесь ледяной компоненты (вода, аммиак, метан). В этом находит отражение тот факт, что С. занимает промежуточное положение между Юпитером, состоящим в осн. из водорода, и Ураном и Нептуном, в составе к-рых преобладает ледяная компонента, а водород составляет относительно небольшую фракцию.
Наличие у С. магн. поля, вероятно, связано с действием гидромагнитного динамо. Магн. поле на экваторе 0,21 Гс. Замечат. особенностью собств. магн. поля планеты является его почти точная аксиальная симметрия, что, видимо, обусловлено сильным дифференц. вращением наружных слоев С. Отклонение оси магн. диполя от оси собств. вращения не превышает 1°.
С. получает от Солнца прибл. в 100 раз меньше тепла, чем Земля. Его эффективная температура составляет 95 К, что заметно выше равновесной (74 К). Это означает, что излучаемая С. в окружающее пространство энергия прибл. втрое больше энергии, получаемой от Солнца, и свидетельствует о высокой эффективности внутр. источника тепла. Наиб. вероятной природой этого источника может быть преобразование в тепло гравитац. энергии, высвобождающейся за счёт выпадения капель жидкого гелия (к-рые образуются при низкой темп-ре в жидком водороде) из внеш. оболочек к центру планеты.
Под атмосферой С. понимают верх. часть его внеш. газовой оболочки. Хим. состав атмосферы С. существенно отличается от среднесолнечного. Кроме водорода и гелия, в состав атмосферы входят метан (СН4), аммиак (NH3), фосфин (РН3), в небольших кол-вах присутствуют углеводороды (С2Н6 и С2Н2). Относит. содержания СН4, NH3, PH3, С2Н6 и С2Н2 составляют соответственно 2*10-3; 2*10-4; 3*10-8; 8*10-6 и 10-7. Заметна обогащённость углеродом (входящим в состав соединений): отношение С/Н больше солнечного в 2,3 раза.
Структура атмосферы, профили темп-ры и давления похожи на юпитерианские. Темп-pa в тропосфере на уровне с давлением 1 атм составляет ок. 145 К и медленно понижается с высотой (с адиабатич. градиентом 0,85 К км-1). В тропопаузе при давлении ок. 0,1 атм темп-pa прибл. 80 К. Ниже неё расположены облака, к-рые, вероятно, состоят из неск. слоев; считается, что верхний видимый слой образован в осн. кристаллами аммиака, хотя этот факт нельзя считать окончательно установленным. Для атмосферы С. характерно наличие ряда динамич. образований (полос типа зон и поясов, пятен), роднящих его с Юпитером. Вместе с тем упорядоченная структура зон и поясов (отражающих систему планетарной циркуляции), а также наблюдаемых крупных пятен - овалов (ассоциируемых с крупными атм. вихрями) на С. выражена менее чётко из-за протяжённого слоя надоблачной мелкодисперсной дымки. Размеры динамич. образований (вихрей и струй) велики по сравнению со шкалой высот (60 км), но малы по сравнению с Rс и меньше аналогичных образований на Юпитере. В то же время скорости ветра на экваторе С. в неск. раз превышают скорости атм. движений в приэкваториальной зоне Юпитера, достигая почти 500 м/с. Возможно, это связано с тем, что в систему циркуляции на С. вовлекаются более глубокие области атмосферы, где интенсивность передачи момента кол-ва движения в область экваториальных широт выше. Заметные различия динамики атмосфер С. и Юпитера определяются различием интенсивностей источников тепла в недрах этих планет, меньшим значением ускорения силы тяжести и большей толщиной наружной непроводящей молекулярной оболочки С. По этой же причине для атмосферы С. характерна меньшая по сравнению с Юпитером роль в передаче кинетич. энергии вихревых движений упорядоченным зональным течениям.
В ср. и верх. областях атмосферы С. важную роль играют фотохим. превращения; особенно это касается процессов с участием NH3, PH3 и гидрокарбонатов. Помимо солнечной радиации онергетич. источниками, обусловливающими рост темп-ры выше тропопаузы, могут быть джоулев разогрев и диссипация энергии внуттренних волн. Макс. электронная концентрация в ионосфере С. 2*104 см-3 на высоте ~ 2500 км (считая от уровня с давлением 1 атм). Магнитосфера С. по своей топологии и характеру процессов занимает промежуточное положение между магнитосферами Юпитера и Земли (см. Магнитосферы планет). Близость магн. поля С. к дипольному проявляется в симметрии распределения заряж. частиц во внутр. зоне его магнитосферы - как относительно оси вращения, так и относительно экваториальной плоскости, с к-рой практически совпадает положение нейтрального плазменного слоя. До радиальных расстояний (7 -15) Rс плазма вращается практически синхронно с планетой. Плазма состоит из лёгких и тяжёлых ионов, вероятно, водорода, гелия, углерода, азота и кислорода. Их источником, помимо солнечного ветра, могут служить ледяные поверхности спутников С. и атмосфера Титана, орбита к-рого лежит внутри магнитосферы планеты. Наиб. устойчивые зоны захваченной радиации расположены в пределах на дневной и на ночной сторонах. Ударный фронт находится примерно на 25 Rс. Между магнитопаузой и устойчивой зоной радиационного пояса (17-23 Rc) располагается область (зона псевдозахвата), где энергетич. спектр частиц становится очень мягким и наблюдаются конвективные потоки плазмы. На ночной стороне образуется протяжённый плазменный шлейф, на к-рый, вероятно, сильно влияют процессы, происходящие в межпланетной среде.
В систему С. входят окружающие его знаменитые кольца и 18 спутников. Кольца представляют собой единую плоскую систему небольшой толщины (менее километра), расположенную в экваториальной плоскости планеты. Выделяют 7 колец, основные из к-рых А, В и С занимают область пространства между 1,2 и 2,3 Rс. Кольца обладают чрезвычайно сложной внутр. структурой: каждое из них состоит ещё из сотен индивидуальных колечек. Эта динамич. структура, так же, как и более крупные промежутки внутри колец (деления), являются следствием резонансов, обусловленных гравитац. взаимодействием колец с неравновесной фигурой планеты и её многочисл. спутниками. Наиб. заметны деления Кассини, Максвелла, Гюйгенса, Энке, Килера. В радиальном направлении периодически наблюдаются тёмные и светлые образования («спицы»), существование к-рых связывают с электростатич. эффектами, обусловленными наличием пылевых частиц внутри колец, погружённых в магнитосферу С. (с процессами в «пылевой плазме»). Внутри кольца С расположено ближайшее к планете слабое кольцо D, у внеш. края кольца А находится очень тонкое кольцо F, а за ним, вплоть до , последовательно очень слабые кольца G и Е. Общая масса колец 5*10-8 Мс. Размеры частиц, образующих кольца, прибл. от долей см до 5 м, состоят они в осн. из льда (гл. обр. водяного). Проблема их происхождения не решена - это либо реликты ранней стадии эволюции Солнечной системы, либо результат гравитац. взаимодействия С. с ядрами комет.
Все крупные спутники С., исключая Титан и Фебу, имеют ледяные поверхности. Низкие ср. плотности (1,2-1,4 г/см3) свидетельствуют о том, что эти тела почти целиком водно-ледяные; несколько больше относит. содержание скальных пород у Мимаса, Дионы, Реи (размеры от 400-500 до 1500 км). Тем не менее на поверхности большинства спутников С. присутствуют характерные следы эндогенной активности, особенно сильно выраженные на Энцеладе. Этот факт пока не нашёл убедит. объяснения (наиб. вероятной причиной является диссипация приливной энергии вследствие наличия резонансов при орбитальном движении спутника в гравитац. поле С.). Размеры открытых «Вояджером» маленьких спутников неправильной формы, находящихся в динамич. взаимодействии с более крупными спутниками и кольцами, прибл. от 30 до 190 км.
Наиб. интерес представляет самый крупный спутник С.- Титан, превышающий по размерам Меркурий (радиус Титана 2575 км, ср. плотность 1,9 г/см3). Замечат. особенность этого спутника - наличие у него мощной атмосферы (состоящей в осн. из азота) с давлением у поверхности1,5 атм и темп-рой 92 К. По-видимому, Титан состоит наполовину из льдов и наполовину из скальных пород (силикатов, металлов). Собств. магн. поля Титан не имеет. На его поверхности с большой вероятностью присутствуют моря и озёра из метана и, возможно, океаны из этана. Из метана состоят и довольно плотные облака, из к-рых метан в виде дождя может выпадать на поверхность; предполагают, что круговорот метана на Титане аналогичен круговороту воды на Земле. В атмосфере Титана обнаружен богатый спектр простых органич. соединений, а сама атмосфера теряет атомарный и молекулярный водород и азот, что приводит к сложным процессам взаимодействия Титана с магнитосферой С. По характеру глобальной дымки и проявлению заметного парникового эффекта у поверхности Титан в чём-то напоминает Венеру, хотя определяющие эти свойства хим. состав и процессы иной природы. Лаб. моделирование и расчёты предсказывают, что при совр. скорости образования органич. веществ за время жизни Солнечной системы на Титане должен был образоваться слой такого материала толщиной не менее 100 м. Поэтому с Титаном связывают надежды обнаружить аналог первичного органич. вещества, к-рое могло существовать на ранней Земле.
Лит.: Маров М. Я., Планеты Солнечной системы, 2 над., М., 1986;
Saturn, ed. by Т. Gehrels, M. Matthews, Tucson, 1984; Система Сатурна,
пер. с англ., М., 1990. М. Я. Маров.