Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Доступная практика научной коммуникации
Современные методы и средства научной коммуникации
Бесплатный открытый доступ к результатам научных исследований с правом законного их использования представляет актуальную и важную задачу научной коммуникации. При этом особый интерес представляет реализация практики открытого бесплатного доступа научных организаций и отдельных исследователей к онлайновым публикациям научных результатов. Далее...

Средства коммуникации

сверхвысокий вакуум

СВЕРХВЫСОКИЙ ВАКУУМ - газовая среда с очень низкой плотностью газа, давление к-рого р < 10-6 Па. В природе С. в. наблюдается в космич. пространстве, заполненном в осн. водородом с давлением р ~ 10-12 Па. В окрестности Земли С. в. регистрируется на высотах более 600 км (10-8 Па на высоте 1200 км). В лаб. условиях достигнуто разрежение р ~ 10-13 Па.

Необходимость в С. в. возникла в связи с разработкой ускорителей заряженных частиц, имитаторов космоса и приборов для исследования поверхности твёрдых тел. С. в. необходим, чтобы исключить влияние окружающей газовой среды на состояние поверхности твёрдого тела в течение достаточно большого промежутка времени; напр., сохранение состояния атомно-чистой поверхности и её исследование в течение часа возможно при давлении р - 10-8 Па (см. Вакуум).

Трудности получения С. в. связаны с тем, что кол-во газа, адсорбированного на поверхности (в стенках камер) и натекающего из внеш. пространства (атмосферы), намного превосходит то кол-во, к-рое должно заполнять вакуумный объём при р ~ 10-6 Па. Эти трудности растут с увеличением степени необходимого разрежения, откачиваемого объёма и сложности устройств, размещаемых в нём.

При получении С. в. необходимо: соблюдение т. н. вакуумной гигиены при изготовлении элементов прибора; применение разъёмных соединений с металлич. уплотнителями; прогрев системы до темп-ры Т ~ 500°С; использование насосов с большой скоростью откачки и низким предельным давлением. В установке не должно быть материалов, упругость паров к-рых при 500°С превышает предельное разрежение, наиб. широко используются нержавеющие аустенитные стали. Разъёмные соединения в прогреваемых системах должны обладать малой скоростью натекания и сохранять высокую надёжность при многократных циклах «нагрев - охлаждение». Этим требованиям наилучшим образом удовлетворяет соединение типа «Conflat» (рис. 1).

8017-10.jpg

Рис. 1. Разъёмное фланцевое соединение с металлическим уплотнителем.

8017-11.jpg

Рис. 2. Схема турбомолекулярного насоса.
8017-12.jpg

Для получения С. в. обычно необходимы 3 ступени откачки: низковакуумная, высоковакуумная и сверхвысоковакуумная. Последняя включается после прогрева в высоком вакууме (10-4 - 10-5 Па) всех частей системы, в т. ч. и сверхвысоковакуумных насосов. В качестве последних используют насосы со скоростью откачки до 106 л/с. Это турбомолекулярные, магниторазрядные. гетерноионные, конденсационно-сорбционные (криогенные) насосы. Последние обеспечивают самое высокое предельное разрежение ~10-11 Па. В турбомолекулярном насосе (рис. 2) в корпусе (1) с закреплёнными дисками (2)вращается ротор (3), диски к-рого, как и диски статора 2, имеют косые прорези (>40, рис. 2, б). При вращении ротора молекулы газа увлекаются в каналы, образуемые прорезями. Остаточное давление ~10-8 Па. Действие магниторазрядного насоса основано на сочетании ионной откачки (ионизация и удаление ионов электрич. полем) и поглощения газа распыляемым материалом катода (в результате ионной бомбардировки). Положит. ионы частично внедряются в катод, частично нейтрализуются и, попадая на анод, замуровываются распылёнными частицами катода. Гетерноионные насосы основаны на сочетании поглощения химически активных газов с ионной откачкой инертных газов и углеводородов. В криогенных насосах происходит поглощение газа охлаждённой до низких темп-р поверхностью.

8017-13.jpg

Рис. 3. Инверсно-магнетронный манометр: А - анод; Э - вспомогательный электрод; Кол.- коллектор ионов.

Измерение С. в. вначале осуществлялось ионизационным манометром Байярда - Альперта, в к-ром газ ионизируется электронами, испускаемыми термокатодом, и измеряется ионный ток, пропорциональный давлению. По мере освоения области всё более низких давлений эти манометры уступили место инверсно-магнетронным манометрам (рис. 3). В них измерение сверхнизкого давления газа возможно благодаря использованию Пеннинга разряда ,возбуждаемого между холодными электродами в пост. магн. поле Н. Подавление «паразитной» автоэлектронной эмиссии с поверхности коллектора, повышающее чувствительность прибора, обеспечивает вспомогат. электрод Э. При анодном напряжении ~6 кВ и магн. поле 2*103 Э, направленном вдоль оси анода, зажигание разряда и соответственно измерение С. в. происходят при давления 10-10 Па и ниже.

Техника С. в., кроме фундам. исследований, направленных на изучение атомной и электронной структуры чистой поверхности, стимулировала развитие важных науч--техн. направлений и методов (напр.. молекулярно-пучковая эпитаксия ,катализ, тонкоплёночная микроэлектронная технология и др.).

Лит.: Глазков А. А., С а к с а г а н с к и й Г. Л., Вакуум электрофизических установок и комплексов, М., 1985; У э с т о н Д ж., Техника сверхвысокого вакуума, пер. с англ., М 1988 И. М. Овчинников.

  Предметный указатель