Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
ВОЗРОЖДЕНИЕ СТРУН
Подобно высокой моде, космология имеет свои собственные причуды, пристрастия и заблуждения. Минули благословенные дни обзоров галактик и открытия квазаров; сегодня все помешаны на загадке первых звезд Вселенной и природы темной энергии.Но,например, возвращается интерес к космическим струнам, потерянный в конце 1990-х гг. Далее...

Радиотелескоп

скорость света

СКОРОСТЬ СВЕТА в свободном пространстве (вакууме) - скорость распространения любых электромагнитных волн (в т. ч. световых); одна из фундам. физ. постоянных; представляет собой предельную скорость распространения любых физ. воздействий (см. Относительности теория)и инвариантна при переходе от одной системы отсчёта к другой.

С. с. в среде с' зависит от показателя преломления среды n, различного для разных частот v излучения (Дисперсия света):8042-38.jpg . Эта зависимость приводит к отличию групповой скорости от фазовой скорости света в среде, если речь идёт не о монохроматич. свете (для С. с. в вакууме эти две величины совпадают). Экспериментально определяя с', всегда измеряют групповую С. с. либо т. н. с к о р о с т ь сигнала, или скорость передачи энергии, только в нек-рых спец. случаях не равную групповой.

Впервые С. с. определил в 1676 О. К. Рёмер (О. Ch. Roemer) по изменению промежутков времени между затмениями спутников Юпитера. В 1728 её установил Дж. Брадлей (J. Bradley), исходя из своих наблюдений аберрации света звёзд. В 1849 А. И. Л. Физо (А. Н. L. Fizeau) первым измерил С. с. по времени прохождения светом точно известного расстояния (базы); т. к. показатель преломления воздуха очень мало отличается от 1, то наземные измерения дают величину, весьма близкую к с. В опыте Физо пучок света от источника S (рис. 1), отражённый полупрозрачным зеркалом N, периодически прерывался вращающимся зубчатым диском W, проходил базу MN (ок. 8 км) н, отразившись от зеркала М, возвращался к диску. Попадая на зубец, свет не достигал наблюдателя, а попавший в промежуток между зубцами свет можно было наблюдать через окуляр Е. По известным скоростям вращения диска определялось время прохождения светом базы. Физо получил значение с = 313300 км/с В 1862 Ж. Б. Л. Фуко (J. В. L. Foucault) реализовал высказанную в 1838 идею Д. Араго (D. Arago), применив вместо зубчатого диска быстровращающееся (512 об/с) зеркало. Отражаясь от зеркала, пучок света направлялся на базу и по возвращении вновь попадал на это же зеркало, успевшее повернуться на нек-рый малый угол (рис. 2). При базе всего в 20 м Фуко нашёл, что С. с. равна 2980008042-41.jpg 500 км/с. Схемы и осн. идеи опытов Физо и Фуко были многократно использованы в последующих работах по определению С. с. Полученное А. Майкельсоном (A. Michelson) (см. Майкельсона опыт)в 1926 значение8042-42.jpg км/с было тогда самым точным и вошло в интернац. таблицы физ. величин.
8042-39.jpg

Рис. 1. Определение скорости света методом Физо.

8042-40.jpg

Рис. 2. Определение скорости света методом вращающегося зеркала (методом Фуко): S - источник света; R - быстровращающееся зеркало; С - неподвижное вогнутое зеркало, центр которого совпадает с осью вращения Я (поэтому свет, отражённый С, всегда попадает обратно на R); М-полупрозрачное зеркало; L - объектив; Е - окуляр; RС - точно измеренное расстояние (база). Пунктиром показаны положение R, изменившееся за время прохождения светом пути RС и обратно, и обратный ход пучка лучей через объектив L, который собирает отражённый пучок в точке S', а не вновь в точке S, как это было бы при неподвижном зеркале Л. Скорость света устанавливают, измеряя смещение SS'.

Измерения С. с. в 19 в. сыграли большую роль в физике, дополнительно подтвердив волновую теорию света. Выполненное Фуко в 1850 сравнение С. с. одной и той же частоты v в воздухе и воде показало, что скорость в воде8042-43.jpg в соответствии с предсказанием волновой теории. Была также установлена связь оптики с теорией электромагнетизма: измеренная С. с. совпала со скоростью эл--магн. волн, вычисленной из отношения эл--магн. и эл--статич. единиц электрич. заряда [опыты В. Вебера (W. Weber) и Ф. Кольрауша (F. Kohlrausch) в 1856 и последующие более точные измерения Дж. К. Максвелла (J. С. Maxwell)]. Это совпадение явилось одним из отправных пунктов при создании Максвеллом в 1864-73 эл--магн. теории света.

В совр. измерениях С. с. используется модернизиров. метод Физо (модуляц. метод) с заменой зубчатого колеса на эл--оптич., дифракц., интерференционный или к--л. иной модулятор света, полностью прерывающий или ослабляющий световой пучок (см. Модуляция света ).Приёмником излучения служит фотоэлемент пли фотоэлектронный умножитель .Применение лазера в качестве источника света, УЗ-модулятора со стабилизиров. частотой и повышение точности измерения длины базы позволили снизить погрешности измерений и получить значение8042-44.jpg км/с. Помимо прямых измерений С. с. по времени прохождения известной базы, широко применяются косвенные методы, дающие большую точность. Так, с помощью микроволнового вакуумиров. резонатора [К. Фрум (К. Froome), 1958] при длине волны излучения8042-45.jpg = 4 см получено значение8042-46.jpg км/с. С ещё меньшей погрешностью определяется С. с. как частное от деления независимо найденных8042-47.jpg и v атомарных или молекулярных спектральных линий. К. Ивенсон (К. Evenson) и его сотрудники в 1972 по цезиевому стандарту частоты (см. Квантовые стандарты частоты)нашли с точностью до 11-го знака частоту излучения СН4-лазера, а по криптоновому стандарту частоты - его длину волны (ок. 3,39 мкм) и получили8042-48.jpg ± 0,8 м/с. Решением Генеральной ассамблеи Международного комитета по численным данным для науки и техники - КОДАТА (1973), проанализировавшей все имеющиеся данные, их достоверность и погрешность, С. с. в вакууме принято считать равной 299792458 ±1,2 м/с.

Как можно более точное измерение величины с чрезвычайно важно не только в общетеоретич. плане и для определения значении др. физ. величин, но и для практич. целей. К ним, в частности, относится определение расстояний по времени прохождения радио-или световых сигналов в радиолокации, оптической локации, светодальнометрии, в системах слежения ИСЗ и др.

Лит.: Вафиади В. Г., Попов Ю. В., Скорость света и ее значение в науке и технике, Минск, 1970; Тейлор В., Паркер В., Лангенберг Д., Фундаментальные константы и квантовая электродинамика, пер. с англ., М., 1972. А. М. Бонч-Бруевич.

  Предметный указатель