Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
ТВЕРДАЯ СВЕРХТЕКУЧЕСТЬ
Твердый гелий может вести себя как сверхтекучая жидкость.
Как известно, твердые тела сохраняют свою форму, а жидкости растекаются, принимая форму сосуда. Сверхтекучие жидкости представляют собой квинтэссенцию жидкого состояния: они способны без малейшего сопротивления протекать сквозь тончайшие каналы и даже «взбираться» по стенкам сосуда, чтобы вытечь из него. Далее...

Сверхтекучий гелий

солнечная батарея

СОЛНЕЧНАЯ БАТАРЕЯ (батарея солнечных элементов) - устройство, непосредственно преобразующее энергию солнечного излучения в электрическую. Действие солнечного элемента (СЭ) основано на использовании явления внутр. фотоэффекта .Наиб, применение получили конструкции СЭ с р-п-переходами и гетеропереходами ,представляющие собой плоскую (базовую) полупроводниковую пластину с тонким фронтальным слоем полупроводника, имеющего тип проводимости, противоположный типу проводимости базовой области. При облучении в полупроводнике генерируются дополнит. носители заряда, к-рые перемещаются под действием электрич. поля р - re-перехода и создают на внеш. выводах фотоэдс.

Основные параметры солнечных элементов. При отсутствии внеш. нагрузки напряжение на выводах СЭ максимально и наз. напряжением холостого хода UХХ. В замкнутом накоротко фотоэлементе потечёт макс. фототок Iкз - ток короткого замыкания. При наличии внеш. нагрузки величины напряжения UH на нагрузке и тока IH меньше значений UXX и Iкз соответственно. Величина8048-52.jpg наз. фактором заполнения нагрузочной характеристики.

Важнейшим параметром СЭ является его кпд (или эффективность преобразования энергии солнечного излучения в электрическую)8048-53.jpg , где Рс - мощность солнечного излучения, падающего на поверхность СЭ. Эффективность СЭ определяется тем, что часть солнечного излучения с энергией фотона, меньшей ширины запрещённой зоны8048-54.jpg полупроводника, проходит через СЭ без поглощения и в фотоэлектрич. отношении является бесполезной. Чем меньше ширина запрещённой зоны, тем большая доля солнечного света поглощается в нём.

Др. важная причина снижения кпд СЭ - неполное использование энергии поглощённых фотонов. При генерации электронно-дырочных пар фотонами с энергией, превышающей ширину запрещённой зоны полупроводника, избыточная энергия излучения теряется при переходах внутри зоны за счёт соударений носителей с атомами решётки и переходит в тепло. Эти потери уменьшаются с увеличением8048-55.jpg

Осн. причинами дополнит. потерь, уменьшающих практически достижимые значения кпд, являются отражение части светового потока от поверхности СЭ (коэф. отражения для полупроводников, применяемых в СЭ, составляет ок. 30% и 3-5% при использовании просветляющих покрытий) и рекомбинац. потери, вызванные тем, что часть возбуждённых фотоносителей не доходят до р - re-перехода, рекомбинирует, а их энергия передаётся решётке полупроводника (см. Рекомбинация носителей заряда). В фотоэлементах с р - п-переходами существенны потери за счёт поверхностной рекомбинации, особенно для носителей, генерированных вблизи облучаемой поверхности КВ-частью солнечного света. Омические потери в СЭ приводят к уменьшению фактора заполнения нагрузочной характеристики.

Энергетич. характеристики С. б. определяются материалом фотоэлемента, конструктивными особенностями СЭ, кол-вом СЭ в батарее. Распространёнными материалами для СЭ являются Si, GaAs, CdS, CdTe (см. Полупроводниковые материалы). Наиб. высокий кпд получен в СЭ на основе Si (17% при освещении в земных условиях) и в СЭ на основе GaAs (22%). Конструктивно С. б. обычно выполняют в виде плоской панели и СЭ, защищённых прозрачными покрытиями. Число СЭ в батарее может достигать неск. сотен тысяч, площадь панели - тысяч м2, ток С. б. - сотен А, напряжение - сотен В, генерируемая мощность - неск. десятков и сотен кВт.

Увеличение кпд может быть получено в каскадных СЭ с неск. р - re-переходами в полупроводниках с разл. шириной запрещённой зоны. Солнечный спектр может быть расщеплён либо селективными зеркалами, либо посредством расположения неск. СЭ один за другим с убыванием ширины запрещённой зоны СЭ по ходу солнечных лучей. Расчётные значения кпд для двухкаскадных СЭ достигают 45%. Осн. перспективы в реализации монолитных конструкций каскадных СЭ заключаются в трудности осуществления последоват. соединения верхнего и нижнего элементов без внесения дополнит. омических и оптич. потерь.

Достоинства С. б.- их простота, надёжность и долговечность, малая масса и миниатюрность СЭ, генерирование энергии без загрязнения окружающей среды; осн. недостаток - высокая стоимость. Применяются на космич. летат. аппаратах, где они занимают доминирующее положение среди др. источников автономного энергопитания. В земных условиях С. б. используют для питания устройств автоматики, переносных радиостанций, разл. приёмников, для катодной антикоррозионной защиты нефте- и газопроводов и др.

Лит.: Васильев А. М., Ландсман А. П., Полупроводниковые фотопреобразователи, М., 1971; Алферов Ж. И., Андреев В. М., Перспективы фотоэлектрического метода преобразования солнечной энергии, Черноголовка, 1981; Каган М. Б., Гетерогенные, каскадные и комбинированные фотопреобразователи на основе арсенида галлия, в кн.: Фотоприемники и фотопреобразователи, Л., 1986; К о л т у н М. М., Солнечные элементы, М., 1987. В. М. Андреев.

  Предметный указатель