Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Четыре способа сломать космический аппарат
Наиболее громкие катастрофы космических аппаратов, которые произошли в результате ошибок обслуживающего персонала (Ракета "Протон-М" со спутниками ГЛОНАСС, метеорологический спутник NOAA-N Prime, ракета Ariane 5, зонды "Фобос-1" и "Фобос-2". Далее...

Крушения космических аппаратов

спиновое эхо

СПИНОВОЕ ЭХО - явление повторного возникновения сигналов ядерной или электронной магн. индукции, обусловленное фазировкой спиновых магн. моментов под действием радиочастотных импульсов. Простейший вид С. э. открыт Э. Ханом (Е. Hahn) в 1950. Образец, содержащий ядра со спином8059-92.jpg и гиромагн. отношением8059-93.jpg, помещают в пост. магн. поле Н и подвергают действию радиочастотных импульсов линейно поляризованного магн. поля8059-94.jpg, удовлетворяющего условиям ядерного магнитного резонанса (ЯМР):8059-95.jpg ;8059-96.jpg. Удобно перейти в систему координат, вращающуюся с частотой w вокруг оси8059-97.jpg в ту же сторону, что и ларморовская прецессия ядерных спинов. В этой системе координат циркулярно поляризованная в указанном направлении компонента радиочастотного поля становится статической и определяет направление оси х. Равновесная ядерная намагниченность М, первоначально направленная вдоль Н, после включения поля Н1 начинает прецессировать вокруг него с угл. частотой8059-98.jpg и через время8059-99.jpg оказывается направленной вдоль оси у (рис., а). В этот момент первый импульс РЧ-поля (8059-100.jpg-импульс) выключается.
8059-101.jpg

Спиновое эхо в неоднородном магнитном поле (вращающаяся система координат): а - поворот намагниченности М под действием8059-102.jpg-импульса; б - расфазировка спинов, имеющих различные частоты прецессии, и их повторная фазировка после8059-103.jpg -импульса.

Последующая прецессия вектора М вокруг Н в плоскости ху наводит в приёмной катушке спектрометра ЯМР сигнал свободной индукции. Со временем этот сигнал затухает (поперечная релаксация), т. к. ядерные спины находятся в разных локальных магн. полях и, как следствие, имеют различающиеся частоты прецессии. Это связано как с неоднородностью внеш. магн. поля Я, так и с внутр. магн. полями, создаваемыми ядрами друг на друге. Эфф. время поперечной релаксации8059-104.jpg , где DH - ширина линии ЯМР. Если локальные поля постоянны во времени (напр., обусловлены неоднородностью поля Н), то прецессия спинов оказывается обратимой и возможно наблюдение С. э. На рис. (б)показаны траектории движения двух ядерных спинов. Угл. частоты их прецессии отличаются от со на малые величины и равны соответственно8059-105.jpg и8059-106.jpg , поэтому во вращающейся системе координат они поворачиваются в плоскости ху за время т на углы8059-107.jpg и8059-108.jpgот оси у. Если теперь подать на оОразец второй радиочастотный импульс, аналогичный первому, но с длительностью t2 = 2t1 (8059-109.jpg-импульс), то спины повернутся вокруг оси х на угол8059-110.jpg и займут положения и8059-111.jpg8059-112.jpg . Двигаясь затем с прежними8059-113.jpg угл. скоростями и в том же направлении, оба спина спустя время t после второго импульса одновременно достигнут направления -у, т. е. произойдут фазировка ядерных магн. моментов и повторное появление сигнала индукции. Описанный механизм С. э. действует при условии t1,8059-115.jpg, что эквивалентно требованию8059-114.jpg.

В действительности восстановление сигнала свободной индукции методом С. э. не может быть полным: потери обусловлены зависящими от времени внутр. локальными полями. Зависимость величины сигнала С. э. от времени8060-1.jpg позволяет измерять истинное время поперечной релаксации Т2. Так же исследуют структуру спектров ЯМР, скрытую неоднородным уширением.

Существуют разл. модификации описанного варианта С. э. Трёхимпульсное С. э. делает возможным измерять наряду с Т2 время продольной релаксации Т1. Многоимпульсные когерентные методы позволяют на неск. порядков повысить чувствительность и разрешающую способность ЯМР-спектроскопии.

Методы С. э. используют также в ядерном квадрупольном резонансе и электронном парамагнитном резонансе, хотя при этом трудно выполнить условие8060-2.jpg . Большим своеобразием отличается С. э. в ферромагнетиках и антиферромагнетиках.

Явления, аналогичные С. э., характерны и для систем иной природы, обладающих дискретным набором квантовых энергетич. уровней, уширенных статическими случайными полями. Известны, в частности, фотонное эхо ,поляризац. эхо, фононное эхо и др.

Лит.: Ф а р р а р Т., Б е к к е р Э., Импульсная и фурьеспектроскопия ЯМР, пер. с англ., М., 1973; Салихов К. М., Семенов А. Г., Цветков IO. Д., Электронное спиновое эхо и его применение, Новосиб., 1976; У о Д ж., Новые методы ЯМР в твердых телах, пер. с англ., М., 1978. В. А. Ацаркин.

  Предметный указатель