Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
ВОЗРОЖДЕНИЕ СТРУН
Подобно высокой моде, космология имеет свои собственные причуды, пристрастия и заблуждения. Минули благословенные дни обзоров галактик и открытия квазаров; сегодня все помешаны на загадке первых звезд Вселенной и природы темной энергии.Но,например, возвращается интерес к космическим струнам, потерянный в конце 1990-х гг. Далее...

Радиотелескоп

тета-функция

ТЕТА-ФУНКЦИЯ (q-функция) -1) обобщённая ф-ция

5020-35.jpg

(ф-ция Хевисайда). Производная Т,-ф. равна дельта-функции q'(x) = d(x). 2) Квазидвоякопериодическая целая функция комплексного переменного z, т.е. ф-ция q(z), имеющая кроме периода w ещё квазипериод wт, Imt>0, при прибавлении к-рого к значению аргумента значение ф-ции умножается на нек-рый мультипликатор f (z). Иначе говоря, имеют место тождества по z:

5020-36.jpg

Как периодическая целая ф-ция, Т--ф. всегда представима рядом

5020-37.jpg

в к-ром подбор коэффициентов сn должен обеспечивать сходимость. Ряды (1) наз. т е т а-р я д а м и (по причине первонач. обозначений). Возможны и иные представления Т--ф., напр. в виде бесконечного произведения.

В приложениях обычно ограничиваются мультипликаторами вида

5020-38.jpg

где k - натуральное число, наз. п о р я д к о м или в е с о м Т--ф., q - числовой множитель. Сходимость обеспечивается, напр., коэффициентами вида

5020-39.jpg

Во мн. вопросах удобны Т--ф., удовлетворяющие условиям

5020-40.jpg

Все Т--ф. вида (2) одного и того же порядка k составляют векторное пространство размерности k. Базис этого пространства можно записать в виде

5020-41.jpg

Отд. примеры Т--ф. встречаются уже в работах Я. Бернул-ли (J. Bernoulli, 1713), Л. Эйлера (L. Euler), в теории теплопроводности Ж. Фурье (J. Fourier). K. Якоби (С. Jacobi) подверг Т--ф. систематич. исследованию, выделил четыре специальные Т--ф., к-рые и положил в основу своей теории эллиптических функций.

Т--ф. Якоби q0 (z), q1 (z), q2(z), q3(z) представляют собой след. ряды, абсолютно и равномерно сходящиеся на компактах плоскости комплексного переменного z:

5020-42.jpg

Эти ряды достаточно быстро сходятся. Обозначения q0(Z), q1(z), q2(z), q3(z) восходят к К. Вейерштрассу (К. Weierstrass). Вместо q0(z) часто пишут q4(z), имеются и др. системы обозначений.

Все Т--ф. Якоби представляют собой целые трансцендентные ф-ции комплексного переменного z, причём q1(z) - нечётная ф-ция, а остальные ф-ции q0(z), q2(z), q3(z) - чётные.

Имеют место след. соотношения периодичности:

5020-43.jpg

из к-рых вытекает, что Т--ф. Якоби являются эллиптич. ф-циями III рода по Эрмиту.

Т--ф. Якоби связаны между собой ф-лами преобразования:

5020-44.jpg

Все четыре Т--ф. удовлетворяют одному и тому же диффе-ренц. ур-нию:

5021-1.jpg

Существуют также обобщения Т--ф. на случай многих комплексных переменных. В физике Т--ф. естественно возникают, в частности, в определении меры интегрирования функционального интеграла в струн теории.

Лит.: Уиттекер Э--Т., Ватсон Дж--Н., Курс современного анализа, пер. с англ., 2 изд., ч. 2, M., 1963; Гурвиц А., Курант Р., Теория функций, [пер. с нем.], M., 1968. E. Д. Соломенцев.

  Предметный указатель