Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Самовосстанавливающийся чип
Европейская наука приближает день, когда устройства смогут самовосстанавлливаться.
Ученые не сидят, сложа руки и предвидя момент, когда размеры транзисторов и чипов станут настолько малы, что не смогут сохранять текущий уровень устойчивости к внешним воздействиям, придумали, как решить проблему. Далее...

Чип

уплотнения скачок

УПЛОТНЕНИЯ СКАЧОК -характерная для сверхзвукового течения область, в к-рой происходит резкое увеличение давления, плотности, темп-ры и уменьшение скорости течения газа. У. с. в нек-рых случаях тождествен ударной волне, а в др. случаях составляет часть её структуры (подробнее см. Ударная волна ).Толщина У. с. обычно имеет порядок ср. длины пробега молекул, поэтому в большинстве задач газовой динамики, когда газ можно считать сплошной средой, толщиной У. с. пренебрегают.

Различают 2 осн. типа элементарных У. с.- п р я м о й с к а ч о к, в к-ром не происходит изменения направления вектора скорости, и косой скачок, в к-ром вектор скорости поворачивается на нек-рый угол q.

Для прямого У. с. в результате совместного решения ур-ний сохранения массы, энергии и кол-ва движения и ур-ния состояния газа можно получить простые соотношения, характеризующие изменение параметров газа в скачке. Кинематич. соотношение имеет вид

5043-39.jpg

где 5043-40.jpg -безразмерная скорость газа перед скачком,5043-41.jpg- то же за скачком,5043-42.jpg-критич. скорость, 5043-43.jpg-темп-pa адиабатически заторможенного газа, 5043-44.jpg-отношение теплоёмкостей при постоянном давлении и постоянном объёме, R - газовая постоянная, 5043-45.jpg-скорость течения перед У. с. Изменение плотности в У. с. 5043-46.jpg где 5043-47.jpg и 5043-48.jpg-плотности газа до и после У. с.; повышение темп-ры и давления выразится ф-лами

5043-49.jpg

T. к. тангенциальная по отношению к фронту скачка составляющая скорости 5043-50.jpg не изменяется при переходе через У. с., то для косого У. с. можно получить аналогичные соотношения, если вместо wн и w1 рассматривать нормальные фронту скачка составляющие скорости5043-51.jpg и 5043-52.jpg где a-угол между вектором скорости 5043-54.jpg и фронтом У. с. (рис. 1).

5043-53.jpg

Напр., повышение давления для плоского косого У. с. определяется ф-лой

5043-55.jpg

Аналогичные зависимости можно вывести для отношения плотностей и др., т. е. параметры течения за У. с. (в т. ч. и угол поворота вектора скорости q при переходе через косой У. с.) рассчитываются по заданным параметрам перед ним и известному углу a наклона фронта скачка.

Для обтекания плоского клина идеальным недиссоциирующим газом графики осн. зависимостей приведены на рис. 2. На рис. 2 (а) даны зависимости угла наклона У. с. a от угла клина5043-56.jpg и безразмерной скорости lн набегающего потока; на рис. 2 (б)изображена в полярных координатах l,q зависимость скорости l1 за У. с. от 5043-57.jpg (т. н. ударная поляра); на рис. 2 (в)дана зависимость отношения давлений 5043-58.jpg в У. с. от 5043-59.jpg Из рис. 2 следует, что для заданных 5043-60.jpgрешение, получающееся при определении величин5043-61.jpg и 5043-62.jpg неоднозначно. Для каждого значения5043-64.jpgимеется предельное значение qпр; при обтекании клина с углом 5043-65.jpg вместо конфигурации, изображённой на рис. 3 (а), образуется отсоединённый от вершины клина криволинейный У. с. (рис. 3, б).

5043-63.jpg

В случае простого (регулярного) отражения У. с. от твёрдой стенки (рис. 4, а)скорость направлена под углом a1 к плоскости падающего У. с. При прохождении через У. с. направление скорости меняется на угол q1, а её величина уменьшается 5043-66.jpg За отражённым У. с. направление скорости должно измениться на угол5043-67.jpg (направления скорости в областях 1 и 3 совпадают с направлением стенки), при этом её величина уменьшится до 5043-69.jpg соответственно давление5043-70.jpg

5043-68.jpg

Если при заданном значении 5043-71.jpg увеличивать интенсивность падающего на стенку У. с., то можно получить решение, при к-ром реализуется форма отражения, представленная на рис. 4, б (нерегулярное, или маховское, отражение). В точке разветвления У. с. образуется поверхность тангенциального разрыва TP, по обеим сторонам к-рой статич. давление и направление скорости одинаковы, а величина скорости, темп-pa, плотность и энтропия различны. При отражении У. с. от свободной поверхности, отделяющей область сверхзвукового течения от неподвижного газа (рис. 4, в), условия на свободной поверхности аналогичны условиям на поверхности тангенциального разрыва (рис. 4, б). Характер же течения в области 2 за падающим У. с. такой же, как и в области 2 при отражении от твёрдой стенки (рис. 4, а), но в области 3 за отражённым от свободной поверхности возмущением давление 5043-72.jpg Отражённое возмущение в этом случае представляет собой пучок волн разрежения и 5043-73.jpg

Более сложным является случай, когда поверхность тангенциального разрыва разделяет два сверхзвуковых потока с разл. скоростями (рис. 4, г). Для обеспечения равенства давлений p3=р5 поверхность тангенциального разрыва в точке пересечения У. с. может иметь излом, и междуобластями 4 и 5 возникает У. с. В зависимости от конкретных значений 5044-2.jpg 5044-3.jpg и5044-4.jpg возмущение, разделяющее области 2 и 3, может быть У. с. или волнами разрежения.

5044-1.jpg

При пересечении двух У. с. (рис. 4, д)вектор скорости встречает У. с. под углами 5044-5.jpg и5044-6.jpg, поворачиваясь за ними на углы 5044-7.jpg За отражёнными У. с. векторы скорости должны быть параллельны; при этом между областями 3 и 5 возникает поверхность тангенциального разрыва, не параллельная скорости набегающего потока в области /. В случае 5044-8.jpg и тангенциальный разрыв отсутствует.

Рассмотренные примеры описывают течения идеального газа,- лишённого вязкости. Если же газ вязкий, вблизи поверхности имеется пограничный слой ,то рассмотренная выше картина отражения У. с. от твёрдой поверхности существенно усложняется. В этом случае при большой интенсивности падающего У. с., превышающей нек-рую критич. величину, пограничный слой отрывается от твёрдой поверхности и образуется зона вихревого течения (рис. 4, е).

Лит.: Ландау Л, Д., ЛифшицЕ. М., Гидродинамика, 4 изд., М., 1988; Лойцянекий Л. Г., Механика жидкости и газа, 6 изд., М., 1987; Абрамович Г. Н., Прикладная газовая динамика, 5 изд., ч. 1-2, М., 1991. М. Я. Юделович.

  Предметный указатель