Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Взгляд в 2020 год. Астрономия
Будущие открытия в астрономии.
Корреспонденты журнала Nature опросили ученых из разных областей науки.
Ключевые вопросы на ближайшее десятилетие включают определение природы темной материи, которая наполняет Вселенную - это будет основным разочарованием, если парадигма темной материи не будет подтверждена прямым детектированием слабо взаимодействующих частиц, так как пройдет уже 40 лет с момента ее создания. Далее...

Вселенная, темная материя

ферримагнитный резонанс

ФЕРРИМАГНИТНЫЙ РЕЗОНАНС -резонансное поглощение эл--магн. энергии ферримагнетиком ,находящимся в пост. магн. поле. Наблюдался впервые Хьюиттом (W. H. Hewitt) в ферритах в 1949, вскоре после наблюдения (1946) ферромагнитного резонанса в металлах.

Теория Ф. р. может быть построена на основе классич. представлений с использованием подрешёточной гипотезы Л. Нееля (L. Neel, 1948) (см. Ферримагнетизм ).Согласно этой гипотезе, элементарные магн. моменты ионов, находящихся в эквивалентных узлах магн. решётки ферримаг-нетика, объединяются в магнитные подрешётки с намаг-ниченностями Мj (j=1, 2, ... N). Число подрешеток N, строго говоря, должно быть равно числу магн. ионов в примитивной элементарной магн. ячейке. Напр., для железоиттриевого граната Y3Fe5O12 (ЖИГ) N=20. Однако типы колебаний с наинизшими частотами могут быть описаны на основе моделей с меньшим числом подрешеток, во многих случаях-на основе двухподрешёточной модели. Так, в случае ЖИГ 12 ионов Fe3+ в тетраэдрич. узлах и 8 таких ионов в октаэдрич. узлах объединяются соответственно в две подрешётки с антипараллельными намагниченностями. Конечно, N- 2 высш. типов колебаний будут при этом "потеряны".

Намагниченности подрешеток Mj удовлетворяют ур-ни-ям, аналогичным Ландау - Лифшица уравнению для намагниченности ферромагнетика:

5056-29.jpg

Здесь gj-магнитомеханич. отношение для j-й подрешётки; Hэф j - действующее на неё эфф. поле:

5056-30.jpg

Rj-диссипативный член, F-плотность свободной энергии ферримагнетика. В неё входят энергия (зеемановская) во внеш. магн. поле и энергии всех учитываемых видов взаимодействия, включая обменное. Причём, в отличие от ферромагнетика, не только неоднородная, но и од- нородная часть эфф. поля этого взаимодействия входит в ур-ние (1).

При условии mj<<Mj0 (где Mj0- постоянные составляющие, a mj - комплексные амплитуды переменных составляющих векторов Mj) из (1) в нулевом приближении следуют условия равновесия

5056-31.jpg

(т. е. параллельность векторов Mj0 и Hjэф0), а в первом приближении линейные ур-ния

5056-32.jpg

Проекции этих ур-ний на оси координат образуют систему связанных ур-ний, т. к. в hэф j входят намагниченности и др. подрешеток. В отсутствие внеш. перем. поля эта система является системой однородных ур-ний, её решениями являются намагниченности N типов свободных колебаний, а равенство нулю её определителя даёт ур-ние для N частот этих колебаний. Диссипативный член Rj может быть записан в одной из форм, аналогичных используемым в теории ферромагн. резонанса, напр. в форме Гильберта:

5056-33.jpg

С учётом R j свободные колебания становятся затухающими, а их частоты - комплексными.

5056-37.jpg

Рис. 1. Основные состояния изотропного двухподрешё-точного ферримагнетика: 1-антипараллельное; 2 - неколлинеарное; 3-параллельное.

Решению системы (4) должно предшествовать нахождение векторов Mj0. При достаточно низких темп-pax их длины можно считать заданными, а ориентации находить с помощью соотношений (3) или эквивалентных им условий минимума энергии: 5056-34.jpg

где qj и jj -полярный и азимутальный углы вектора Mj0.Мj0 могут быть найдены, исходя из условий (5). Для ферримагнетиков (так же, как и для антиферромагнетиков)осн. состояния, т. е. ориентации векторов Mj0 (и соот-ветственно условия и частоты Ф. р.), оказываются различными в разных интервалах изменения внеш. пост. поля H0. Рассмотрим неограниченный изотропный двухподрешё-точный ферримагнетик при нулевой (практически достаточно низкой) темп-ре, когда длины векторов М10 и M20 можно считать заданными. Осн. состояния для этого случая показаны на рис. 1. Первое - а н т и п а р а л л е л ь н о е состояние реализуется в интервале значений

5056-36.jpg


где l - константа обменного взаимодействия между под-решётками. В действительности, с учётом размагничивающих полей и анизотропии, образцы конечных размеров при Н0 < Hд распадаются на домены и первое (однородное) осн. состояние имеет место при Нд01(Нд<<Н1). Второе - н е к о л л и н е а р н о е состояние реализуется при

5056-38.jpg

а третье - п а р а л л е л ь н о е - при H0>H2; поля H1 и H2 наз. соответственно первое и второе обменные поля. Зависимости углов q1 и q2 между полем H0 и, соответственно, векторами М10 и М20, а также суммарной пост. намагниченности М0= |М10 + М20| от H0 показаны на рис. 2. В неколлинеарном осн. состоянии

5056-39.jpg

5056-40.jpg

Рис. 2. Полевые зависимости углов между намагниченностями подрешёток и постоянным магнитным полем, а также суммарной постоянной намагниченности двухподрешёточного ферримагнетика.


Для рассмотрения колебаний намагниченности в первом осн. состоянии следует, спроектировав (4) на оси х и у (ось z совпадает с направлением H0), перейти затем к ц и р к ул я р н ы м п е р е м е н н ы м mjb=mjx + imjy (j=1, 2). Тогда для mj+ и mj- получатся независимые ур-ния. Это означает, что собственные (свободные незатухающие) типы колебаний представляют собой круговую прецессию намагни-ченностей M1 и М2 вокруг оси z (рис. 3) соответственно с правым для mj+ и левым для mj_ направлениями вращения. Для собственных частот этих колебаний w+ и w_ справедливо ур-ние

5056-41.jpg

5056-42.jpg

Рис. 3. Прецессия намагниченностей подрешёток ферримагнетика в антипараллельном основном состоянии: а - ферромагнитный, б-обменный типы колебаний.


Решения его приведены на рис. 4.

5056-45.jpg

Рис. 4. Частоты ферримагнитного резонанса в антипараллельном основном состоянии.

Наиб. интерес представляет область малых пост. полей (Н0<<Н1). В этом случае

5056-43.jpg

а 5056-44.jpg. Отсюда следует важный вывод: в области малых полей и низких частот (где имеет место только тип колебаний с частотой w+) ферримагнетик ведёт себя как ферромагнетик с намагниченностью M0 = | М10 - М20| и эффективным g-фактором, к-рый определяется выражением (10). Тип колебаний с частотой w+ наз. часто ферромагнитным, а тип колебаний с частотой w_-обменным. Прецессия векторов намаг-ниченностей подрешёток для ферромагн. типа колебаний (рис. 3,а) происходит таким образом, что эти векторы остаются приблизительно антипараллельными. Именно поэтому в приближённое выражение (10) не входит обменная постоянная l. Рассмотрение вынужденных колебаний показывает, что ферромагн. тип колебаний возбуждается внеш. перем. магн. полем с круговой поляризацией и правым вращением и в области малых полей и низких частот магн. восприимчивость имеет такой же вид, как для ферромагнетика с теми же эфф. параметрами. Эта эквивалентность сохраняется и при учёте формы образца, в частности для резонансных частот и компонент тензора внеш. восприимчивости малого эллипсоида. Сохраняется она и при учёте анизотропии и при учёте потерь. Ширина кривой Ф. р. для ферромагн. типа колебаний

5056-46.jpg

где a1 и a2-параметры диссипации подрешёток; gэф определяется ф-лой (10), а определением aэф является выражение (11).

Во втором, неколлинеарном, осн. состоянии также возможны два типа колебаний. Для первого концы векторов M1 и М2 движутся по эллипсам, однако прецессия вектора суммарной намагниченности M=M1+M2 является круговой. Этот тип колебаний возбуждается перем. магн. полем с круговой поляризацией и правым вращением, частота его (в частном случае g1 =g2) w+ = gH0 (рис. 5). Для этого типа колебаний ферримагнетик эквивалентен ферромагнетику с зависящей от H0 (рис. 2) постоянной намагниченностью M0 = | M10 + M20 |. Частота же второго типа колебаний при всех принятых допущениях w_=0, и этот тип колебаний не возбуждается однородным перем. магн. полем. При учёте анизотропии частота 5057-1.jpg но будет низкой. Этот тип колебаний представляет собой т. н. м я г к у ю м о д у.

5057-2.jpg

Рис. 5. Частоты ферримагнитного резонанса в неколли-неарном основном состоянии (при g1 =g2). Штриховые линии- частоты колебаний, которые не возбуждаются однородным переменным полем.


В третьем, параллельном, осн. состоянии ферримагне-тик для одного типа колебаний также эквивалентен ферромагнетику с суммарной намагниченностью: М0 = М10 + М20.

В случае ферримагнетика с числом подрешёток, большим двух, в т. ч. и с неколлинеарными постоянными намагниченностями подрешёток, всегда существует один тип колебаний, для к-рого в слабых пост. полях весь "пучок" векторов намагниченности прецессирует как одно целое. Для этого типа колебаний ферримагнетик эквивалентен ферромагнетику и резонансная частота не зависит от констант обменного взаимодействия.

Магн. материалы, применяемые для создания магн. устройств техники СВЧ, являются ферримагнетиками (или ферритами в широком смысле этого слова). Как правило, используется ферромагн. тип колебаний, к-рый возбуждается в этом диапазоне при сравнительно небольших пост. магн. полях. Поэтому вывод об эквивалентности ферримагнетика для этого типа колебаний ферромагнетику с эфф. параметрами имеет очень большое практич. значение. Он позволяет использовать при расчёте указанных устройств сравнительно простую теорию ферромагн. резонанса.

5057-5.jpg

Рис. 6. Эффективный g-фактор и ширина DН резонансной кривой ферримагнетика Gd3 Fe5 O12 с точками компенсации при температуре ~286 K.

Однако необходимо иметь в виду следующие особенности Ф. р.

1) Кроме ферромагн. типа колебаний существует N- 1 (где N-число подрешёток) обменных типов колебаний, резонансные частоты к-рых при малых Н0 лежат обычно в ИК-диапазоне. Хотя интенсивности возбуждения их малы (пропорциональны квадратам разностей g-факторов подрешёток), соответствующие этим типам колебаний максимумы поглощения в ИК-диапазоне были обнаружены в редкоземельных ферритах со структурой граната.

2) В сильных пост. полях (H0~(1/2)H1) частоты двух типов колебаний (в двухподрешёточной модели) становятся сравнимыми друг с другом и обе зависят от обменной константы.

3) В ещё более сильных полях (H1<H0<H2) в некол-линеарном осн. состоянии кроме ферромагн. типа колебаний имеется другой - мягкая мода.

4) В нек-рых ферримагнетиках существуют точки компенсации "по темп-ре" или "по составу" - такие темп-ры или концентрации компонент, при к-рых5057-3.jpg (магн. точки компенсации) или 5057-4.jpg (механич. точки компенсации). Вблизи этих точек частоты двух типов колебаний сближаются и даже в слабых пост. полях зависят от обменной константы. Согласно (10),5057-6.jpg в магн. точке компенсации и 5057-7.jpg -в механической. Однако это проявляется лишь как тенденция (рис. 6), т. к. вблизи точек компенсации не выполняется условие H0<<H1 и ф-ла (10) перестаёт быть справедливой. Характер колебаний и резонансные частоты при этом (как и в антиферромагнетиках) существенно зависят от кри-сталлографич. анизотропии. Лит.: Гуревич А. Г., Магнитный резонанс в ферритах и антиферромагнетиках, М., 1973; Крупинка С., Физика ферритов и родственных им магнитных окислов, пер. с нем., т. 2, М., 1976; Гуревич А. Г., Mелков Г. А., Магнитные колебания и волны, М., 1994. А. Г. Гуревич.


  Предметный указатель