Стартовая Предметный указатель Новости науки и техники
Новости науки и техники
Математика - оптимизация мозга и развитие творческого мышления
Инновационная статья по образованию, мышлению, принятия нужных и оптимальных решений
«Почему некоторые люди думают иначе? Почем люди думают лучше? Почему люди думают быстрее? Почему у некоторых людей творческие идеи ярче и интереснее, и как они придумывают ЭТО ВСЕ!» Далее...

Решение математических задач

электрооптика

ЭЛЕКТРООПТИКА - раздел оптики, в к-ром изучаются изменения оптич. свойств среды под действием электрич. поля и вызванные этими изменениями особенности взаимодействия оптич. излучения со средой, помещённой в электрич. поле. Оптич. характеристики любой среды, такие, как величина показателей преломления для разл. поляризаций света и оптическая активность, зависят от распределения связанных зарядов в среде. Если среда находится под действием внеш. электрич. поля, то положение зарядов как электронных, так и ионных в ней несколько смещается. Это приводит к изменению эллипсоида показателей преломления и вектора гирации среды.

Величина внеш. электрич. поля Е, как правило, много меньше внутр. поля среды. Поэтому изменение оптич. свойств оказывается довольно малым и соотношение, описывающее эти свойства, может быть представлено в виде ряда по степеням внеш. поля:


200000589-1.jpg


Соотношение (*) описывает эллипсоид показателей преломления в диэлектрич. негиротропной среде. Из малости внеш. поля Е следуют неравенства


200000589-2.jpg


Для сред, где коэф.200000589-3.jpgв левой части (*) можно ограничиться двумя членами, в этом случае среда обладает линейным электрооптич. эффектом (Поккельса эффект). Такой эффект может наблюдаться только в средах, не имеющих центральной симметрии. В центросимметрич-ных средах200000589-4.jpgи наблюдается только квадратичный Керра эффект. Эффекты более высокого порядка пока не наблюдались. Наведённое электрич. полем двупреломле-ние (анизотропия поляризуемости) — малоинерционный эффект200000589-5.jpg


Наложение электрич. поля на свободные атомы или др. квантованные системы приводит к снятию вырождения и расщеплению энергетич. уровней (см. Штарка эффект ),пропорциональному 200000589-6.jpgили в более сильных полях200000589-7.jpg Несовпадение поглощений для разл. поляризаций света приводит к наведённому электрич. полем дихроизму.

Другой механизм влияния электрич. поля на оптич. свойства вещества связан с определ. ориентацией в поле молекул, обладающих постоянным дипольным моментом или анизотропией поляризуемости. В результате у первоначально изотропного ансамбля молекул появляются свойства одноосного кристалла. Характерное время ориентационных процессов колеблется от200000589-8.jpgдля газов и чистых жидкостей до200000589-9.jpgс и больше для коллоидных растворов, молекул, аэрозолей и т. п. Особенно сильно выражен ориентационный эффект в жидких кристаллах (время релаксации200000589-10.jpgс), в них наблюдается целый ряд электрооптич. эффектов. В твёрдых телах при наложении электрич. поля наблюдается появление оптической анизотропии, обусловлен, установлением различий в ср. расстояниях между частицами решётки вдоль и поперёк поля (стрикционный эффект). Как ориентационный, так и стрикционный эффекты не только дают существ, вклад в эффект Керра, но и приводят к изменению интенсивности и деполяризации рассеянного света под влиянием электрич. поля (т. н. дитиндализм).

К числу электрооптич. эффектов относится также электрогирация — изменение оптич. активности под действием электрич. поля. Однако этот эффект значительно меньше эффектов Поккельса и Керра.

Появление лазеров привело к наблюдению в электрич. полях оптич. частоты многих электрооптич. эффектов, известных ранее только для постоянного поля, а также к наблюдению новых явлений Э., связанных с изменением поляризуемости атомов и молекул при их возбуждении. К их числу относится образование фазовых дифракционных решёток в интерференц. поле интенсивных когерентных световых потоков. Характерная особенность электрооптич. явлений в полях оптич. частоты — их резонансный характер.

Электрооптич. явления широко применяются для создания устройств управления оптич. излучением (модуляторы света ,дефлекторы, оптич. фазовые решётки и др.) и оптич. индикаторов (жидкокристаллич. дисплеи, цифровые индикаторы и др.), для регистрации напряжённости поля, напр, по эффекту Штарка в плазме, а также для исследования строения вещества, внутримолекулярных процессов, явлений в растворах и кристаллах и т. п.

Лит.: Блинов Л. М., Электро- и магнитооптика жидких кристаллов, М., 1978: Ярив А., Юх П., Оптические волны в кристаллах, пер. с англ., М., 1987. В. Н. Парыгин, В. А. Замков.

  Предметный указатель